AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A multi-colloidal gold immunochromatography assay for rapid and simultaneous detection of 13 herbicides

Qianqian Lu1Xinxin Xu1Aihua Qu1Liqiang Liu1Yuzhe Li2( )Maozhong Sun1( )Chuanlai Xu1Hua Kuang1
International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
China National Center for Food Safety Risk Assessment, Beijing 100021, China
Show Author Information

Graphical Abstract

The monoclonal antibodies against sulfonylurea herbicides and phenylurea herbicides were prepared, and a multi-colloidal gold immunochromatography assay was developed for rapid and simultaneous screening of sulfonylurea herbicides and phenylurea herbicides in wheat.

Abstract

Herbicide residues in agricultural products can have adverse effects on the environment and human health, therefore, there is an urgent need to establish a sensitive, rapid, and wide-ranging detection method. In this study, haptens of phenylurea herbicides (PUs) and sulfonylurea herbicides (SUs) were analyzed and designed based on computational simulation techniques, and two high-performance broad-spectrum monoclonal antibodies against PUs and SUs were prepared. On this basis, a multi-colloidal gold immunochromatography assay (multi-CGIA) was developed to simultaneously detect 13 herbicides in wheat. The visual limit of detection (vLOD) for PUs including diuron, chlortoluron, neburon, chlorbromuron, and linuron was 1–2 μg/kg. The vLOD for SUs including metsulfuron methyl, ethametsulfuron-methyl, sulfometuron-methyl, tribenuron methyl, cinosulfuron, triasulfuron, chlorimuron-ethyl, and chlorsulfuron was 2–10 μg/kg. The results of real sample determination indicated that the multi-CGIA is accurate, stable, and reliable, and adaptable to on-site preliminary screening of actual samples.

Electronic Supplementary Material

Download File(s)
6858_ESM.pdf (588.7 KB)

References

[1]

Yamada, Y.; Murase, M.; Goto, Y.; Mizoshita, N. Perfluoroalkyl group-covered organosilica films for the sensitive detection of sulfonylurea herbicides in laser desorption/ionization mass spectrometry. J. Agric. Food Chem. 2023, 71, 5006–5015.

[2]

Jia, L.; Jin, X. Y.; Zhao, L. X.; Fu, Y.; Ye, F. Research progress in the design and synthesis of herbicide safeners: A review. J. Agric. Food Chem. 2022, 70, 5499–5515.

[3]

Wu, J. Y.; Luo, S. Y.; Huang, X. J. Fabrication of monolith-based electrodes for simultaneous solid-phase microextraction of phenylurea and sulfonylurea herbicides assisted by electric field. Chem. Eng. J. 2023, 455, 140786.

[4]

Gao, Q. Q.; Huo, J. Q.; Chen, L.; Yang, D. C.; Zhang, W. H.; Jia, B.; Xu, X. T.; Barnych, B.; Zhang, J. L.; Hammock, B. D. Development of immunoassay based on a specific antibody for sensitive detection of nicosulfuron in environment. Sci. Total Environ. 2023, 859, 160247.

[5]

Han, W. T.; Yang, Y.; Hang, N.; Zhao, W. N.; Lu, P. F.; Li, S. Q. Switchable hydrophilic solvent-based dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the determination of four types of sulfonylurea herbicides in soils. J. Sep. Sci. 2022, 45, 1252–1261.

[6]

Han, J. H.; Cui, Y. Y.; He, X. Q.; Zhang, Y.; Yang, C. X. Fabrication of carboxyl functionalized microporous organic network coated stir bar for efficient extraction and analysis of phenylurea herbicides in food and water samples. J. Chromatogr. A 2021, 1640, 461947.

[7]

Rose, M. T.; Zhang, P.; Rose, T. J.; Scanlan, C. A.; McGrath, G.; Van Zwieten, L. Herbicide residues in Australian grain cropping soils at sowing and their relevance to crop growth. Sci. Total Environ. 2022, 833, 155105.

[8]

Liu, L.; Qiao, L. Q.; Liu, F.; Sun, Q. Y.; Zhao, Y. F.; Wang, X. L.; Li, N.; Jiang, H. L.; Chen, X. F.; Wang, M. L. et al. Facile synthesis of hydroxylated triazine-based magnetic microporous organic network for ultrahigh adsorption of phenylurea herbicides: An experimental and density-functional theory study. J. Hazard. Mater. 2024, 465, 133468.

[9]

Guo, L. N.; Tian, M.; Li, Z.; Wang, Q. Q.; Wu, Q. H.; Hao, L.; Wang, C. Preparation of hypercrosslinked porous polymer with manifold functional groups for sensitive determination of phenylurea herbicides in beverages and celtuce samples. Food Chem. 2023, 427, 136674.

[10]

Xu, X.; Gao, J. X.; Ran, M.; Guo, Y. H.; Feng, D. M.; Zhang, L. Nanoconfinement of functionalized ionic liquid for enhanced adsorption and rapid sensitive detection of phenylurea herbicides in food and environmental samples. Food Chem. 2024, 431, 137149.

[11]

Li, L. C.; Liu, S. G.; Yin, Y.; Wang, Y. J.; Zheng, G. M.; Ma, L. S.; Shan, Q.; Dai, X. X.; Zhao, C.; Xie, W. P. et al. Determination of nine herbicide residues in aquatic products using QuEChERS combined with UPLC-MS/MS and evaluation of matrix effects. Food Sci. 2020, 41, 258–266.

[12]

Yu, L.; Xu, F.; Dai, Q. Z.; Fan, M. L.; Shen, Y. B. Determination of 13 kinds of sulfonylurea herbicides in water by on-line solid phase extraction-ultra-high performance liquid chromatography-quadrupole linear ion trap mass spectrometry. Mod. Chem. Ind. 2022, 42, 250–254 (in Chinese).

[13]

Tang, Y. F.; Wang, L.; Yang, C. W.; Liu, B. Y. Determination of 30 pesticide residues in Savia by ultra-high performance liquid chromatography-tandem mass spectrometry after protection with dithiothreitol and purification with modified QuEChERS adsorbents. Phys. Test. Chem. Anal. (Part B: Chem. Anal.) 2022, 58, 869–876.

[14]

Tekin, Z.; Öztürk Er, E.; Günkara, Ö. T.; Bakırdere, S. A novel determination method for diuron in seaweed samples: Combination of quadruple isotope dilution strategy with liquid chromatography-quadrupole time of flight-tandem mass spectrometry for superior accuracy and precision. J. Chromatogr. A 2020, 1611, 460612.

[15]

Wang, Q. Y.; Yang, J.; Dong, X.; Chen, Y.; Ye, L. H.; Hu, Y. H.; Zheng, H.; Cao, J. Zirconium metal-organic framework assisted miniaturized solid phase extraction of phenylurea herbicides in natural products by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2020, 180, 113071.

[16]

Teepoo, S.; Wongtongdee, U.; Phapugrangkul, P. Development of qualitative and quantitative immunochromatographic strip test assay for rapid and simple detection of leucomalachite green residual in aquatic animals. Food Chem. 2020, 320, 126613.

[17]

Lei, X. L.; Xu, X. X.; Wang, L.; Zhou, W.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L. A quadruplex immunochromatographic assay for the ultrasensitive detection of 11 anesthetics. Nano Res. 2023, 16, 11269–11277.

[18]

Pan, Y. T.; Wang, Z. P.; Duan, C. F.; Dou, L. N.; Wen, K.; Wang, Z. H.; Yu, X. Z.; Shen, J. Z. Comparison of two fluorescence quantitative immunochromatographic assays for the detection of amantadine in chicken muscle. Food Chem. 2022, 377, 131931.

[19]

Hou, S. L.; Ma, J. J.; Cheng, Y. Q.; Wang, H. A.; Sun, J. H.; Yan, Y. X. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control 2020, 117, 107331.

[20]

Chen, Z. J.; Wu, H. L.; Xiao, Z. L.; Fu, H. J.; Shen, Y. D.; Luo, L.; Wang, H.; Lei, H. T.; Hongsibsong, S.; Xu, Z. L. Corrigendum to “rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immunochromatographic assays for simultaneous pesticide screening”. J. Hazard. Mater. 2022, 421, 126823.

[21]

Li, X. L.; Xu, X. X.; Guo, L. L.; Song, S. S.; Liu, L. Q.; Zhu, Y. Y.; Kuang, H.; Xu, C. L.; Xu, L. G. Development of ic-ELISA and colloidal cold-based immunochromatographic assay for red 2G detection in fruit drinks, red wine, and yoghurts. Food Biosci. 2023, 52, 102445.

[22]

Lu, Q. Q.; Liu, L. Q.; Li, J. Y.; Song, S. S.; Kuang, H.; Xu, C. L.; Guo, L. L. Rapid and sensitive quantitation of amitraz in orange, tomato, and eggplant samples using immunochromatographic assay. Food Chem. 2024, 446, 138899.

[23]

Liu, B.; Qin, Y.; Cao, M. R.; Shi, H. P.; Li, S. J.; Sheng, W.; Wang, S. A stable and sensitive enzyme-linked immunosorbent assay (ELISA) for the determination of metsulfuron-methyl residues in foods. J. Food Sci. 2021, 86, 3176–3187.

[24]

Degelmann, P.; Wenger, J.; Niessner, R.; Knopp, D. Development of a class-specific ELISA for sulfonylurea herbicides (sulfuron screen). Environ. Sci. Technol. 2004, 38, 6795–6802.

[25]

Yuan, M.; Liu, B.; Liu, E. M.; Sheng, W.; Zhang, Y.; Crossan, A.; Kennedy, I.; Wang, S. Immunoassay for phenylurea herbicides: Application of molecular modeling and quantitative structure–activity relationship analysis on an antigen–antibody interaction study. Anal. Chem. 2011, 83, 4767–4774.

[26]

Liu, Y.; Guo, L. L.; Xu, X. X.; Kuang, H.; Liu, L. Q.; Xu, C. L.; Sun, M. Z. Immunochromatographic visualization detection platform for bitertanol in foods. Food Chem. 2024, 444, 138599.

[27]

Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

[28]

Cheng, Y.; Ge, W. L.; Kuang, H.; Zhu, J. P.; Liu, L. Q.; Zhu, Y. Y.; Xu, C. L. Gold-based immunochromatographic strip for rapid ketoconazole detection. Microchem. J. 2022, 174, 107083.

[29]

Zeng, L.; Guo, L. L.; Wang, Z. X.; Xu, X. X.; Song, S. S.; Xu, L. G.; Kuang, H.; Li, A. K.; Xu, C. L. Immunoassays for the rapid detection of pantothenic acid in pharmaceutical and food products. Food Chem. 2021, 348, 129114.

[30]

Ye, L. Y.; Xu, X. X.; Qu, A. H.; Liu, L. Q.; Xu, C. L.; Kuang, H. Quantitative assessment of the breast cancer marker HER2 using a gold nanoparticle-based lateral flow immunoassay. Nano Res. 2024, 17, 5452–5460.

[31]

Li, S. Z.; Wu, X. L.; Kuang, H.; Zhu, J. P.; Liu, L. Q. Development of a fluorescent quantification strip assay for the detection of lead. Food Agric. Immunol. 2020, 31, 642–652.

[32]

Yan, J. Y.; Wu, A. H.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L.; Guo, L. L. Development of an immunochromatographic assay for the rapid screening of torasemide in health food. Food Chem. 2024, 432, 137166.

[33]

Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 2023, 16, 1259–1268.

[34]

Suryoprabowo, S.; Xu, X. X.; Kuang, H.; Liu, L. Q.; Xu, C. L. Methods for quantifying phenolphthalein in slimming tea. J. Mater. Chem. B 2021, 9, 3856–3862.

[35]

Lin, L.; Wu, X. L.; Cui, G.; Song, S. S.; Kuang, H.; Xu, C. L. Colloidal gold immunochromatographic strip assay for the detection of azaperone in pork and pork liver. ACS Omega 2020, 5, 1346–1351.

[36]

Liu, J.; Guo, L. L.; Wu, A. H.; Song, S. S.; Liu, L. Q.; Xu, C. L.; Kuang, H.; Xu, L. G. Immunochromatographic assay for the analysis of methomyl in cabbage and tomato. Food Chem. 2023, 409, 135273.

[37]

Lu, Q. Q.; Ding, H. L.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L.; Guo, L. L. Immunochromatographic assay for rapid detection of flupyradifurone in grape, blueberry, and tomato samples. Food Chem. 2024, 433, 137328.

[38]

Zeng, L.; Xu, X. X.; Guo, L. L.; Wang, Z. X.; Ding, H. L.; Song, S. S.; Xu, L. G.; Kuang, H.; Liu, L. Q.; Xu, C. L. An immunochromatographic sensor for ultrasensitive and direct detection of histamine in fish. J. Hazard. Mater. 2021, 419, 126533.

[39]

Hao, K.; Suryoprabowo, S.; Song, S. S.; Kuang, H.; Liu, L. Q. Rapid detection of rifampicin in fish using immunochromatographic strips. Food Agric. Immunol. 2020, 31, 700–710.

[40]

Cheng, Y.; Guo, L. L.; Xu, X. X.; Kuang, H.; Liu, L. Q.; Xu, C. L.; Sun, M. Z. Development of an immunochromatographic test strip for the detection of isofetamid in kiwifruits, grapes, and strawberries. Food Biosci. 2024, 60, 104240.

Nano Research
Pages 8368-8376
Cite this article:
Lu Q, Xu X, Qu A, et al. A multi-colloidal gold immunochromatography assay for rapid and simultaneous detection of 13 herbicides. Nano Research, 2024, 17(9): 8368-8376. https://doi.org/10.1007/s12274-024-6858-0
Topics:

613

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 04 June 2024
Revised: 01 July 2024
Accepted: 01 July 2024
Published: 23 July 2024
© Tsinghua University Press 2024
Return