AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Addressing chemoresistance with a lipid gemcitabine nanotherapeutic strategy for effective treatment of pancreatic cancer

Jiawei Hong1Shiyun Xian1Shusen Zheng1( )Hangxiang Wang1,2( )Donghai Jiang1( )
The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, China
Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
Show Author Information

Graphical Abstract

By employing a simple fatty acid conjugation and subsequent aqueous nanoassembly, a nanoparticle formulation of gemcitabine (Nano GEM) was developed. Nano GEM has demonstrated a more pronounced cytotoxic effect on gemcitabine-resistant pancreatic cancer cells, while also exhibiting favorable biosafety.

Abstract

Resistance to gemcitabine in pancreatic cancer poses a significant clinical challenge. Further investigation is warranted to assess whether nano-formulation strategy can be employed to enhance the sensitivity of resistant strains to gemcitabine therapy. In this study, using gemcitabine-resistant pancreatic cancer cell lines, we examined the therapeutic potential of a gemcitabine nanodelivery platform and assessed the ability to overcome drug resistance against resistant strains. Silencing of human equilibrative nucleoside transporter 1 (hENT1) led to reduced cellular uptake of gemcitabine, resulting in chemoresistance in pancreatic cancer. Gemcitabine nanoparticles circumvented the entry blockade caused by hENT1 silencing through endocytosis. Nanoparticle entry via clathrin-mediated endocytosis increased intracellular gemcitabine accumulation in gemcitabine-resistant pancreatic cancer cells. Moreover, gemcitabine nanoparticles are preferential in vivo delivery to tumor tissues, likely due to the enhanced permeability and retention effect. In comparison to free gemcitabine, gemcitabine nanoparticles demonstrate a more pronounced cytotoxic effect on gemcitabine-resistant pancreatic cancer cells, with favorable biosafety. This study improved the efficacy of gemcitabine through nanotechnology, providing a novel strategy to address gemcitabine-resistant pancreatic cancer.

Electronic Supplementary Material

Download File(s)
6860_ESM.pdf (1 MB)

References

[1]

Zhang, H.; Cao, K. L.; Xiang, J. R.; Zhang, M. T.; Zhu, M. X.; Xi, Q. H. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett. 2023, 571, 216345.

[2]

Grossberg, A. J.; Chu, L. C.; Deig, C. R.; Fishman, E. K.; Hwang, W. L.; Maitra, A.; Marks, D. L.; Mehta, A.; Nabavizadeh, N.; Simeone, D. M. et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 2020, 70, 375–403.

[3]

Ren, B.; Cui, M.; Yang, G.; Wang, H. Y.; Feng, M. Y.; You, L.; Zhao, Y. P. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol. Cancer 2018, 17, 108.

[4]

Sakamoto, H.; Attiyeh, M. A.; Gerold, J. M.; Makohon-Moore, A. P.; Hayashi, A.; Hong, J.; Kappagantula, R.; Zhang, L. C.; Melchor, J. P.; Reiter, J. G. et al. The evolutionary origins of recurrent pancreatic cancer. Cancer Discov. 2020, 10, 792–805.

[5]

Springfeld, C.; Ferrone, C. R.; Katz, M. H. G.; Philip, P. A.; Hong, T. S.; Hackert, T.; Büchler, M. W.; Neoptolemos, J. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin. Oncol. 2023, 20, 318–337.

[6]

Dias Costa, A.; Väyrynen, S. A.; Chawla, A.; Zhang, J. M.; Väyrynen, J. P.; Lau, M. C.; Williams, H. L.; Yuan, C.; Morales-Oyarvide, V.; Elganainy, D. et al. Neoadjuvant chemotherapy is associated with altered immune cell infiltration and an anti-tumorigenic microenvironment in resected pancreatic cancer. Clin. Cancer Res. 2022, 28, 5167–5179.

[7]

Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J. L.; Gourgou-Bourgade, S.; de la Fouchardière, C. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825.

[8]

Kunzmann, V.; Siveke, J. T.; Algül, H.; Goekkurt, E.; Siegler, G.; Martens, U.; Waldschmidt, D.; Pelzer, U.; Fuchs, M.; Kullmann, F. et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2021, 6, 128–138.

[9]

Rossi Sebastiano, M.; Pozzato, C.; Saliakoura, M.; Yang, Z.; Peng, R. W.; Galiè, M.; Oberson, K.; Simon, H. U.; Karamitopoulou, E.; Konstantinidou, G. ACSL3-PAI-1 signaling axis mediates tumor-stroma cross-talk promoting pancreatic cancer progression. Sci. Adv. 2020, 6, eabb9200.

[10]

Hammam, K.; Saez-Ayala, M.; Rebuffet, E.; Gros, L.; Lopez, S.; Hajem, B.; Humbert, M.; Baudelet, E.; Audebert, S.; Betzi, S. et al. Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nat. Commun. 2017, 8, 1420.

[11]

Lawrence, T. S.; Chang, E. Y.; Hahn, T. M.; Shewach, D. S. Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2',2'-difluoro-2'-deoxycytidine (Gemcitabine). Clin. Cancer Res. 1997, 3, 777–782.

[12]

Nakano, Y.; Tanno, S.; Koizumi, K.; Nishikawa, T.; Nakamura, K.; Minoguchi, M.; Izawa, T.; Mizukami, Y.; Okumura, T.; Kohgo, Y. Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br. J. Cancer 2007, 96, 457–463.

[13]

Shukla, S. K.; Purohit, V.; Mehla, K.; Gunda, V.; Chaika, N. V.; Vernucci, E.; King, R. J.; Abrego, J.; Goode, G. D.; Dasgupta, A. et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 2017, 32, 71–87.e7.

[14]

Yang, C.; Zhu, S. K.; Yang, H. J.; Deng, S. S.; Fan, P.; Li, M.; Jin, X. USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1. Am. J. Cancer Res. 2019, 9, 1722–1733.

[15]

Binenbaum, Y.; Na'ara, S.; Gil, Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist. Updat. 2015, 23, 55–68.

[16]

Nakata, B.; Amano, R.; Nakao, S.; Tamura, T.; Shinto, O.; Hirakawa, T.; Okita, Y.; Yamada, N.; Hirakawa, K. Plasma pharmacokinetics after combined therapy of gemcitabine and oral S-1 for unresectable pancreatic cancer. J. Exp. Clin. Cancer Res. 2010, 29, 15.

[17]

Bird, N. T. E.; Elmasry, M.; Jones, R.; Psarelli, E.; Dodd, J.; Malik, H.; Greenhalf, W.; Kitteringham, N.; Ghaneh, P.; Neoptolemos, J. P. et al. Immunohistochemical hENT1 expression as a prognostic biomarker in patients with resected pancreatic ductal adenocarcinoma undergoing adjuvant gemcitabine-based chemotherapy. Br. J. Surg. 2017, 104, 328–336.

[18]

Liu, M. Y.; Zhang, Y. Q.; Yang, J. X.; Cui, X. B.; Zhou, Z. J.; Zhan, H. X.; Ding, K.; Tian, X.; Yang, Z. B.; Fung, K. M. A. et al. ZIP4 increases expression of transcription factor zeb1 to promote integrin α3β1 signaling and inhibit expression of the gemcitabine transporter ENT1 in pancreatic cancer cells. Gastroenterology 2020, 158, 679–692.e1.

[19]

Sagar, S.; Leiphrakpam, P. D.; Thomas, D.; McAndrews, K. L.; Caffrey, T. C.; Swanson, B. J.; Clausen, H.; Wandall, H. H.; Hollingsworth, M. A.; Radhakrishnan, P. MUC4 enhances gemcitabine resistance and malignant behaviour in pancreatic cancer cells expressing cancer-associated short O-glycans. Cancer Lett. 2021, 503, 91–102

[20]

Zeng, S. Y.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in pancreatic cancer. Int. J. Mol. Sci. 2019, 20, 4504.

[21]

Espinoza, J. A.; García, P.; Bizama, C.; Leal, J. L.; Riquelme, I.; Weber, H.; Macanas, P.; Aguayo, G.; Viñuela, E.; Roa, J. C. et al. Low expression of equilibrative nucleoside transporter 1 is associated with poor prognosis in chemotherapy-naïve pT2 gallbladder adenocarcinoma patients. Histopathology 2016, 68, 722–728.

[22]

Mohelnikova-Duchonova, B.; Melichar, B. Human equilibrative nucleoside transporter 1 (hENT1): Do we really have a new predictive biomarker of chemotherapy outcome in pancreatic cancer patients. Pancreatology 2013, 13, 558–563.

[23]

Weng, W. W.; Hong, J. W.; Owusu-Ansah, K. G.; Chen, B. J.; Zheng, S. S.; Jiang, D. H. Pralatrexate mediates effective killing of gemcitabine-resistant pancreatic cancer: Role of mTOR/4E-BP1 signal pathway. Heliyon 2022, 8, e12064.

[24]

Wu, L. M.; Zhang, F.; Chen, X. N.; Wan, J. Q.; Wang, Y. C.; Li, T. Y.; Wang, H. X. Self-assembled gemcitabine prodrug nanoparticles show enhanced efficacy against patient-derived pancreatic ductal adenocarcinoma. ACS Appl. Mater. Interfaces 2020, 12, 3327–3340.

[25]

Gullapalli, R. R.; Demirel, M. C.; Butler, P. J. Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer. Phys. Chem. Chem. Phys. 2008, 10, 3548–3560.

[26]

Cheng, J.; Wang, L. S.; Guttha, V.; Haugstad, G.; Kandimalla, K. K. Delivery of RNA to the blood-brain barrier endothelium using cationic bicelles. Pharmaceutics 2023, 15, 2086.

[27]

Smith, C. M.; Haucke, V.; McCluskey, A.; Robinson, P. J.; Chircop, M. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells. Mol. Cancer 2013, 12, 4.

[28]

Radwan, B.; Rocchetti, S.; Matuszyk, E.; Sternak, M.; Stodulski, M.; Pawlowski, R.; Mlynarski, J.; Brzozowski, K.; Chlopicki, S.; Baranska, M. EdU sensing: The Raman way of following endothelial cell proliferation in vitro and ex vivo. Biosens. Bioelectron. 2022, 216, 114624.

[29]

Tellez, D.; Balkenhol, M.; Otte-Höller, I.; van de Loo, R.; Vogels, R.; Bult, P.; Wauters, C.; Vreuls, W.; Mol, S.; Karssemeijer, N. et al. Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 2018, 37, 2126–2136.

[30]

Sharma, D.; De Falco, L.; Padavattan, S.; Rao, C.; Geifman-Shochat, S.; Liu, C. F.; Davey, C. A. PARP1 exhibits enhanced association and catalytic efficiency with γH2A. X-nucleosome. Nat. Commun. 2019, 10, 5751.

[31]

Singh, N.; Sahoo, S. K.; Kumar, R. Hemolysis tendency of anticancer nanoparticles changes with type of blood group antigen: An insight into blood nanoparticle interactions. Mater. Sci. Eng. C 2020, 109, 110645.

[32]

Qin, C.; Yang, G.; Yang, J. S.; Ren, B.; Wang, H. Y.; Chen, G. Y.; Zhao, F. Y.; You, L.; Wang, W. B.; Zhao, Y. P. Metabolism of pancreatic cancer: Paving the way to better anticancer strategies. Mol. Cancer 2020, 19, 50.

[33]

Capula, M.; Perán, M.; Xu, G.; Donati, V.; Yee, D.; Gregori, A.; Assaraf, Y. G.; Giovannetti, E.; Deng, D. M. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist. Updat. 2022, 64, 100864.

[34]

Natu, J.; Nagaraju, G. P. Gemcitabine effects on tumor microenvironment of pancreatic ductal adenocarcinoma: Special focus on resistance mechanisms and metronomic therapies. Cancer Lett. 2023, 573, 216382.

[35]

Lucien, F.; Pelletier, P. P.; Lavoie, R. R.; Lacroix, J. M.; Roy, S.; Parent, J. L.; Arsenault, D.; Harper, K.; Dubois, C. M. Hypoxia-induced mobilization of NHE6 to the plasma membrane triggers endosome hyperacidification and chemoresistance. Nat. Commun. 2017, 8, 15884.

[36]

Yang, J. H.; Xu, J.; Zhang, B.; Tan, Z.; Meng, Q. C.; Hua, J.; Liu, J.; Wang, W.; Shi, S.; Yu, X. J. et al. Ferroptosis: At the crossroad of gemcitabine resistance and tumorigenesis in pancreatic cancer. Int. J. Mol. Sci. 2021, 22, 10944.

[37]

Springfeld, C.; Jäger, D.; Büchler, M. W.; Strobel, O.; Hackert, T.; Palmer, D. H.; Neoptolemos, J. P. Chemotherapy for pancreatic cancer. Presse Med. 2019, 48, e159–e174.

[38]

Yang, H.; Liu, B.; Liu, D. X.; Yang, Z. R.; Zhang, S. M.; Xu, P. Y.; Xing, Y. M.; Kutschick, I.; Pfeffer, S.; Britzen-Laurent, N. et al. Genome-Wide CRISPR screening identifies DCK and CCNL1 as genes that contribute to gemcitabine resistance in pancreatic cancer. Cancers 2022, 14, 3152.

[39]

Zhu, S. J.; Wonganan, P.; Lansakara-P, D. S. P.; O'Mary, H. L.; Li, Y.; Cui, Z. R. The effect of the acid-sensitivity of 4-( N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression. Biomaterials 2013, 34, 2327–2339.

[40]

Qin, L.; Dong, Z. Z.; Huang, C. Q. L.; Liu, H.; Beebe, J.; Subramaniyan, B.; Hao, Y. Y.; Liu, Y. L.; He, Z. M.; Liu, J. Y. et al. Reversible promoter demethylation of PDGFD confers gemcitabine resistance through STAT3 activation and RRM1 upregulation. Cancer Lett. 2023, 567, 216266.

[41]

Koikawa, K.; Kibe, S.; Suizu, F.; Sekino, N.; Kim, N.; Manz, T. D.; Pinch, B. J.; Akshinthala, D.; Verma, A.; Gaglia, G. et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 2021, 184, 4753–4771.e27.

[42]

Greenhalf, W.; Ghaneh, P.; Neoptolemos, J. P.; Palmer, D. H.; Cox, T. F.; Lamb, R. F.; Garner, E.; Campbell, F.; Mackey, J. R.; Costello, E. et al. Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J. Natl. Cancer Inst. 2014, 106, djt347.

[43]

Nordh, S.; Ansari, D.; Andersson, R. hENT1 expression is predictive of gemcitabine outcome in pancreatic cancer: A systematic review. World J. Gastroenterol. 2014, 20, 8482–8490.

[44]

Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

[45]

Shi, Y.; van der Meel, R.; Chen, X. Y.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020, 10, 7921–7924.

[46]

Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160.

[47]

Sun, R.; Xiang, J. J.; Zhou, Q.; Piao, Y.; Tang, J. B.; Shao, S. Q.; Zhou, Z. X.; Bae, Y. H.; Shen, Y. Q. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Adv. Drug Deliv. Rev. 2022, 191, 114614.

[48]

Yuan, Y. Y.; Xu, L.; Dai, S. Y.; Wang, M.; Wang, H. X. A facile supramolecular approach to fabricate multifunctional upconversion nanoparticles as a versatile platform for drug loading, in vivo delivery and tumor imaging. J. Mater. Chem. B 2017, 5, 2425–2435.

[49]

Von Hoff, D. D.; Ervin, T.; Arena, F. P.; Chiorean, E. G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S. A.; Ma, W. W.; Saleh, M. N. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703.

[50]

Seufferlein, T.; Uhl, W.; Kornmann, M.; Algül, H.; Friess, H.; König, A.; Ghadimi, M.; Gallmeier, E.; Bartsch, D. K.; Lutz, M. P. et al. Perioperative or only adjuvant gemcitabine plus nab-paclitaxel for resectable pancreatic cancer (NEONAX)-a randomized phase II trial of the AIO pancreatic cancer group. Ann. Oncol. 2023, 34, 91–100.

[51]

Tempero, M. A.; Pelzer, U.; O'Reilly, E. M.; Winter, J.; Oh, D. Y.; Li, C. P.; Tortora, G.; Chang, H. M.; Lopez, C. D.; Bekaii-Saab, T. et al. Adjuvant nab-paclitaxel + gemcitabine in resected pancreatic ductal adenocarcinoma: Results from a randomized, open-label, phase III trial. J. Clin. Oncol. 2023, 41, 2007–2019.

[52]

Philip, P. A.; Lacy, J.; Portales, F.; Sobrero, A.; Pazo-Cid, R.; Manzano Mozo, J. L.; Kim, E. J.; Dowden, S.; Zakari, A.; Borg, C. et al. Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): A multicentre, open-label phase 2 study. Lancet Gastroenterol. Hepatol. 2020, 5, 285–294.

[53]

Kang, X. X.; Bu, F. Q.; Feng, W. L.; Liu, F.; Yang, X. K.; Li, H. F.; Yu, Y. J.; Li, G. F.; Xiao, H. H.; Wang, X. Dual-cascade responsive nanoparticles enhance pancreatic cancer therapy by eliminating tumor-resident intracellular bacteria. Adv. Mater. 2022, 34, 2206765.

[54]

Gao, C.; Cheng, K. M.; Li, Y.; Gong, R. N.; Zhao, X.; Nie, G. J.; Ren, H. Injectable immunotherapeutic hydrogel containing RNA-loaded lipid nanoparticles reshapes tumor microenvironment for pancreatic cancer therapy. Nano Lett. 2022, 22, 8801–8809.

[55]

Yu, B. J.; Tang, C.; Yin, C. H. Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials 2014, 35, 6369–6378.

[56]

Sponton, O. E.; Perez, A. A.; Carrara, C. R.; Santiago, L. G. Linoleic acid binding properties of ovalbumin nanoparticles. Colloids Surf. B Biointerfaces 2015, 128, 219–226.

Nano Research
Pages 8377-8388
Cite this article:
Hong J, Xian S, Zheng S, et al. Addressing chemoresistance with a lipid gemcitabine nanotherapeutic strategy for effective treatment of pancreatic cancer. Nano Research, 2024, 17(9): 8377-8388. https://doi.org/10.1007/s12274-024-6860-6
Topics:

395

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 March 2024
Revised: 01 July 2024
Accepted: 02 July 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return