Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Bacterial and cancerous cell membrane fused liposome coordinates with PD-L1 inhibitor for cancer immunotherapy

Xianjin Luo1,2Chenglong Li1Zhaofei Guo1Hairui Wang1Penghui He1Yuanhao Zhao1Yi Lin3Chunting He1Yingying Hou1Yongshun Zhang1Guangsheng Du1()
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, Butenandt Strasse 5-13, Munich 81377, Germany
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

View original image Download original image
Fusogenic liposomes are fabricated by physical extrusion with Al3+ incorporated via electrostatic interaction, then migrate to tumor-draining lymph nodes (TDLNs) and tumor tissues after subcutaneous immunization, delivering tumor antigens and immune adjuvants to stimulate anti-tumor immune responses. Concurrently, the delivered JQ-1 down-regulates PD-L1 expression on antigen-presenting cells (APCs) in tumors or TDLNs, including DCs and macrophages, relieving immune suppression and synergistically enhancing anti-tumor immunity.

Abstract

Although tumor cell membranes with broad-spectrum antigens have been explored for cancer vaccines for decades, their relatively poor capacity to stimulate immune responses, especially cellular immune responses, has limited their application. Here, we presented a novel bacterial and cancerous cell membrane fusogenic liposome for co-delivering cell membrane-derived antigens and adjuvants. Meanwhile, a programmed death-ligand 1 (PD-L1) inhibitor, JQ-1, was incorporated into the formulation to tackle the up-regulated PD-L1 expression of antigen-presenting cells (APCs) upon vaccination, thereby augmenting its anti-tumor efficacy. The fusogenic liposomes demonstrated significantly improved cellular uptake by APCs and effectively suppressed PD-L1 expression in bone marrow-derived dendritic cells (BMDCs) in vitro. Following subcutaneous vaccination, the nano-vaccines efficiently drained to the tumor-draining lymph nodes (TDLNs), and significantly inhibited PD-L1 expression of both dendritic cells (DCs) and macrophages within the TDLNs and tumors. As a result, the liposomal vaccine induced robust innate and cellular immune responses and inhibited tumor growth in a colorectal carcinoma-burden mouse model. In summary, the fabricated cell membrane-based fusogenic liposomes offer a safe, effective, and easily applicable strategy for tumor immunotherapy and hold potential for personalized cancer immunotherapy.

Electronic Supplementary Material

Download File(s)
6861_ESM.pdf (1.1 MB)

References

[1]

Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265–277.

[2]

Koff, W. C.; Burton, D. R.; Johnson, P. R.; Walker, B. D.; King, C. R.; Nabel, G. J.; Ahmed, R.; Bhan, M. K.; Plotkin, S. A. Accelerating next-generation vaccine development for global disease prevention. Science 2013, 340, 1232910.

[3]

Yang, Y. P. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest. 2015, 125, 3335–3337.

[4]

Finn, O. J. Cancer vaccines: Between the idea and the reality. Nat. Rev. Immunol. 2003, 3, 630–641.

[5]

Gubin, M. M.; Zhang, X. L.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W. J. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515, 577–581.

[6]

Sterner, R. C.; Sterner, R. M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69.

[7]

Vandenberk, L.; Belmans, J.; Van Woensel, M.; Riva, M.; Van Gool, S. W. Exploiting the immunogenic potential of cancer cells for improved dendritic cell vaccines. Front. Immunol. 2016, 6, 663.

[8]

González, F. E.; Gleisner, A.; Falcón-Beas, F.; Osorio, F.; López, M. N.; Salazar-Onfray, F. Tumor cell lysates as immunogenic sources for cancer vaccine design. Hum. Vaccin. Immunother. 2014, 10, 3261–3269.

[9]

Sloan, J. M.; Kershaw, M. H.; Touloukian, C. E.; Lapointe, R.; Robbins, P. F.; Restifo, N. P.; Hwu, P. MHC class I and class II presentation of tumor antigen in retrovirally and adenovirally transduced dendritic cells. Cancer Gene Ther. 2002, 9, 946–950.

[10]

Chiang, C. L. L.; Coukos, G.; Kandalaft, L. E. Whole tumor antigen vaccines: Where are we?. Vaccines 2015, 3, 344–372.

[11]

Han, X.; Shen, S. F.; Fan, Q.; Chen, G. J.; Archibong, E.; Dotti, G.; Liu, Z.; Gu, Z.; Wang, C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 2019, 5, eaaw6870.

[12]

Chen, J.; Jiang, C. C.; Jin, L.; Zhang, X. D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol. 2016, 27, 409–416.

[13]

Oh, S. A.; Wu, D. C.; Cheung, J.; Navarro, A.; Xiong, H. Z.; Cubas, R.; Totpal, K.; Chiu, H.; Wu, Y.; Comps-Agrar, L. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 2020, 1, 681–691.

[14]

Tan, K.; Li, R. Z.; Huang, X. T.; Liu, Q. Outer membrane vesicles: Current status and future direction of these novel vaccine adjuvants. Front. Microbiol. 2018, 9, 783.

[15]

Schwechheimer, C.; Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619.

[16]

Wang, S. H.; Gao, J.; Li, M.; Wang, L. G.; Wang, Z. J. A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs). Biomaterials 2018, 187, 28–38.

[17]

Low, K. B.; Ittensohn, M.; Le, T.; Platt, J.; Sodi, S.; Amoss, M.; Ash, O.; Carmichael, E.; Chakraborty, A.; Fischer, J. et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat. Biotechnol. 1999, 17, 37–41.

[18]

Zhu, H. R.; Bengsch, F.; Svoronos, N.; Rutkowski, M. R.; Bitler, B. G.; Allegrezza, M. J.; Yokoyama, Y.; Kossenkov, A. V.; Bradner, J. E.; Conejo-Garcia, J. R. et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep. 2016, 16, 2829–2837.

[19]

Adeegbe, D. O.; Liu, S. W.; Hattersley, M. M.; Bowden, M.; Zhou, C. W.; Li, S.; Vlahos, R.; Grondine, M.; Dolgalev, I.; Ivanova, E. V. et al. BET bromodomain inhibition cooperates with PD-1 blockade to facilitate antitumor response in Kras-mutant non-small cell lung cancer. Cancer Immunol. Res. 2018, 6, 1234–1245.

[20]

Liu, K. S.; Zhou, Z. F.; Gao, H. Y.; Yang, F.; Qian, Y. J.; Jin, H. T.; Guo, Y. M.; Liu, Y.; Li, H. L.; Zhang, C. et al. JQ1, a BET-bromodomain inhibitor, inhibits human cancer growth and suppresses PD-L1 expression. Cell Biol. Int. 2019, 43, 642–650.

[21]

Andrieu, G. P.; Shafran, J. S.; Smith, C. L.; Belkina, A. C.; Casey, A. N.; Jafari, N.; Denis, G. V. BET protein targeting suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer and elicits anti-tumor immune response. Cancer Lett. 2019, 465, 45–58.

[22]

Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. Toxicol. Pathol. 2006, 34, 409–424.

[23]

Chen, D. S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10.

[24]

Jeanbart, L.; Ballester, M.; de Titta, A.; Corthésy, P.; Romero, P.; Hubbell, J. A.; Swartz, M. A. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res. 2014, 2, 436–447.

[25]

van Riet, E.; Ainai, A.; Suzuki, T.; Kersten, G.; Hasegawa, H. Combatting infectious diseases; Nanotechnology as a platform for rational vaccine design. Adv. Drug Deliv. Rev. 2014, 74, 28–34.

[26]

Jiang, H.; Wang, Q.; Sun, X. Lymph node targeting strategies to improve vaccination efficacy. J. Control. Release 2017, 267, 47–56.

[27]

Lutz, M. B.; Kukutsch, N.; Ogilvie, A. L. J.; Rößner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999, 223, 77–92.

[28]

Qin, M.; Du, G. S.; Qiao, N.; Guo, Z. F.; Jiang, M.; He, C. T.; Bai, S. T.; He, P. H.; Xu, Y. H.; Wang, H. R. et al. Whole-cell-mimicking carrier-free nanovaccines amplify immune responses against cancer and bacterial infection. Adv. Funct. Mater. 2022, 32, 2108917.

[29]

Guo, Z. F.; Zhu, Y. N.; Du, G. S.; Qin, M.; He, C. T.; He, P. H.; Song, Y. S.; Chen, W. F.; Bai, S. T.; Wu, F. H. et al. Rapid development of a subunit nano-vaccine against drug-resistant Pseudomonas aeruginosa with effective cross-protection. Nano Today 2022, 43, 101398.

[30]

Noh, Y. W.; Kim, S. Y.; Kim, J. E.; Kim, S.; Ryu, J.; Kim, I.; Lee, E.; Um, S. H.; Lim, Y. T. Multifaceted immunomodulatory nanoliposomes: Reshaping tumors into vaccines for enhanced cancer immunotherapy. Adv. Funct. Mater. 2017, 27, 1605398.

[31]

Chen, W. F.; Song, Y. S.; Bai, S. T.; He, C. T.; Guo, Z. F.; Zhu, Y. N.; Zhang, Z. R.; Sun, X. Cloaking mesoporous polydopamine with bacterial membrane vesicles to amplify local and systemic antitumor immunity. ACS Nano 2023, 17, 7733–7749.

[32]

Marichal, T.; Ohata, K.; Bedoret, D.; Mesnil, C.; Sabatel, C.; Kobiyama, K.; Lekeux, P.; Coban, C.; Akira, S.; Ishii, K. J. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 2011, 17, 996–1002.

[33]

McKee, A. S.; Burchill, M. A.; Munks, M. W.; Jin, L.; Kappler, J. W.; Friedman, R. S.; Jacobelli, J.; Marrack, P. Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proc. Natl. Acad. Sci. USA 2013, 110, E1122–E1131.

[34]

Flach, T. L.; Ng, G.; Hari, A.; Desrosiers, M. D.; Zhang, P.; Ward, S. M.; Seamone, M. E.; Vilaysane, A.; Mucsi, A. D.; Fong, Y. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 2011, 17, 479–487.

[35]

Delgado, M.; Reduta, A.; Sharma, V.; Ganea, D. VIP/PACAP oppositely affects immature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4+ T cells. J. Leucoc. Biol. 2004, 75, 1122–1130.

[36]

Orabona, C.; Grohmann, U.; Belladonna, M. L.; Fallarino, F.; Vacca, C.; Bianchi, R.; Bozza, S.; Volpi, C.; Salomon, B. L.; Fioretti, M. C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat. Immunol. 2004, 5, 1134–1142.

[37]

Liu, G. N.; Ma, N. N.; Cheng, K. M.; Feng, Q. Q.; Ma, X. T.; Yue, Y. L.; Li, Y.; Zhang, T. J.; Gao, X. Y.; Liang, J. et al. Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity. Nat. Nanotechnol. 2024, 19, 387–398.

[38]

Janes, M. E.; Gottlieb, A. P.; Park, K. S.; Zhao, Z. M.; Mitragotri, S. Cancer vaccines in the clinic. Bioeng. Transl. Med. 2024, 9, e10588.

[39]

Cochran, A. J.; Morton, D. L.; Stern, S.; Lana, A. M. A.; Essner, R.; Wen, D. R. Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: Implications for tumor biology and treatment. Mod. Pathol. 2001, 14, 604–608.

[40]

Francis, D. M.; Manspeaker, M. P.; Schudel, A.; Sestito, L. F.; O’Melia, M. J.; Kissick, H. T.; Pollack, B. P.; Waller, E. K.; Thomas, S. N. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci. Transl. Med. 2020, 12, eaay3575.

[41]

Fransen, M. F.; Schoonderwoerd, M.; Knopf, P.; Camps, M. G. M.; Hawinkels, L. J. A. C.; Kneilling, M.; van Hall, T.; Ossendorp, F. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 2018, 3, e124507.

[42]

Watson, R. A.; Tong, O.; Cooper, R.; Taylor, C. A.; Sharma, P. K.; de Los Aires, A. V.; Mahé, E. A.; Ruffieux, H.; Nassiri, I.; Middleton, M. R. et al. Immune checkpoint blockade sensitivity and progression-free survival associates with baseline CD8+ T cell clone size and cytotoxicity. Sci. Immunol. 2021, 6, eabj8825.

[43]

Horton, B. L.; Morgan, D. M.; Momin, N.; Zagorulya, M.; Torres-Mejia, E.; Bhandarkar, V.; Wittrup, K. D.; Love, J. C.; Spranger, S. Lack of CD8+ T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci. Immunol. 2021, 6, eabi8800.

[44]

Gupta, R. K. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev. 1998, 32, 155–172.

[45]

Low, K. B.; Ittensohn, M.; Luo, X.; Zheng, L. M.; King, I.; Pawelek, J. M.; Bermudes, D. Construction of VNP20009: A novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol. Med. 2004, 90, 47–60.

[46]

Broadway, K. M.; Scharf, B. E. Salmonella typhimurium as an anticancer therapy: Recent advances and perspectives. Curr. Clin. Microbiol. Rep. 2019, 6, 225–239.

[47]

Chen, W. F.; Zhu, Y. N.; Zhang, Z. R.; Sun, X. Advances in Salmonella typhimurium-based drug delivery system for cancer therapy. Adv. Drug Deliv. Rev. 2022, 185, 114295.

[48]

Clairmont, C.; Lee, K. C.; Pike, J.; Ittensohn, M.; Low, K. B.; Pawelek, J.; Bermudes, D.; Brecher, S. M.; Margitich, D.; Turnier, J. et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimuvium. J. Infect. Dis. 2000, 181, 1996–2002.

Nano Research
Pages 8389-8401
Cite this article:
Luo X, Li C, Guo Z, et al. Bacterial and cancerous cell membrane fused liposome coordinates with PD-L1 inhibitor for cancer immunotherapy. Nano Research, 2024, 17(9): 8389-8401. https://doi.org/10.1007/s12274-024-6861-5
Topics:
Metrics & Citations  
Article History
Copyright
Return