Over the last two decades, small activating RNAs (saRNAs) have quickly moved from discovery to clinical trials. Characterized as 20 nucleotide long, double stranded RNA, saRNAs have the unique ability to increase gene transcription at the chromatin level. This therapeutic modality has great potential as a safe and redosable alternative to gene therapy by increasing target protein expression without changing the genetic sequence. We describe the successful in vivo saRNA delivery vectors and found that similar to small interfering RNA (siRNA) and mRNA targeting tissues outside the liver works best at the end of a needle. We highlight nanoparticle vectors and RNA-conjugates, where some success has been reported for non-hepatic delivery of saRNA-aptamers.
Zheng, L.; Wang, L.; Gan, J. F.; Zhang, H. RNA activation: Promise as a new weapon against cancer. Cancer Lett. 2014, 355, 18–24.
Kwok, A.; Raulf, N.; Habib, N. Developing small activating RNA as a therapeutic: Current challenges and promises. Ther. Deliv. 2019, 10, 151–164.
Weinmann, L.; Höck, J.; Ivacevic, T.; Ohrt, T.; Mütze, J.; Schwille, P.; Kremmer, E.; Benes, V.; Urlaub, H.; Meister, G. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 2009, 136, 496–507.
Portnoy, V.; Lin, S. H. S.; Li, K. H.; Burlingame, A.; Hu, Z. H.; Li, H.; Li, L. C. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res. 2016, 26, 320–335.
Nechaev, S.; Fargo, D. C.; dos Santos, G.; Liu, L. W.; Gao, Y.; Adelman, K. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of pol II in drosophila. Science 2009, 327, 335–338.
Guenther, M. G.; Levine, S. S.; Boyer, L. A.; Jaenisch, R.; Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007, 130, 77–88.
Fuller-Pace, F. V. The DEAD box proteins DDX5 (p68) and DDX17 (p72): Multi-tasking transcriptional regulators. Biochim. Biophys. Acta BBA - Gene Regul. Mech. 2013, 1829, 756–763.
Zhao, X. Y.; Reebye, V.; Hitchen, P.; Fan, J.; Jiang, H. C.; Sætrom, P.; Rossi, J.; Habib, N. A.; Huang, K. W. Mechanisms involved in the activation of C/EBPα by small activating RNA in hepatocellular carcinoma. Oncogene 2019, 38, 3446–3457.
Legrand, J. M. D.; Chan, A. L.; La, H. M.; Rossello, F. J.; Änkö, M. L.; Fuller-Pace, F. V.; Hobbs, R. M. DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat. Commun. 2019, 10, 2278
Dar, S. A.; Kumar, M. saRNAdb: Resource of small activating RNAs for up-regulating the gene expression. J. Mol. Biol. 2018, 430, 2212–2218.
Li, L. C.; Okino, S. T.; Zhao, H.; Pookot, D.; Place, R. F.; Urakami, S.; Enokida, H.; Dahiya, R. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl. Acad. Sci. USA 2006, 103, 17337–17342.
Lisowiec-Wąchnicka, J.; Bartyś, N.; Pasternak, A. A systematic study on the influence of thermodynamic asymmetry of 5′-ends of siRNA duplexes in relation to their silencing potency. Sci. Rep. 2019, 9, 2477.
Voutila, J.; Saetrom, P.; Mintz, P.; Sun, G. H.; Alluin, J.; Rossi, J. J.; Habib, N. A.; Kasahara, N. Gene expression profile changes after short-activating RNA-mediated induction of endogenous pluripotency factors in human mesenchymal stem cells. Mol. Ther. Nucleic Acids 2012, 1, e35.
Voutila, J.; Reebye, V.; Roberts, T. C.; Protopapa, P.; Andrikakou, P.; Blakey, D. C.; Habib, R.; Huber, H.; Saetrom, P.; Rossi, J. J. et al. Development and mechanism of small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for liver cancer. Mol. Ther. 2017, 25, 2705–2714.
Kaushal, A. Innate immune regulations and various siRNA modalities. Drug Deliv. Transl. Res. 2023, 13, 2704–2718.
Place, R. F.; Wang, J.; Noonan, E. J.; Meyers, R.; Manoharan. M.; Charisse, K.; Duncan, R.; Huang, V.; Wang, X. L.; Li, L. C. Formulation of small activating RNA into lipidoid nanoparticles inhibits xenograft prostate tumor growth by inducing p21 expression. Mol. Ther. Nucleic Acids 2012, 1, e15.
Oliveira, S.; Storm, G.; Schiffelers, R. M. Targeted delivery of siRNA. J. Biomed. Biotechnol. 2006, 2006, 63675.
Wang, T.; Li, M.; Yuan, H.; Zhan, Y.; Xu, H.; Wang, S.; Yang, W.; Liu, J.; Ye, Z. Q.; Li, L. C. AB224. SaRNA guided iNOS upregulation improves erectile function of diabetic rats. Transl. Androl. Urol. 2014, 3, AB224.
Zhang, Y.; Liu, Q. Q.; Zhang, X. M.; Huang, H. Q.; Tang, S. Q.; Chai, Y. J.; Xu, Z. R.; Li, M. R.; Chen, X.; Liu, J. et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnol. 2022, 20, 279.
Dowdy, S. F. Endosomal escape of RNA therapeutics: How do we solve this rate-limiting problem. . RNA 2023, 29, 396–401.
Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Controlled Release 2016, 240, 332–348.
Chatterjee, S.; Kon, E.; Sharma, P.; Peer, D. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc. Natl. Acad. Sci. USA 2023, 121, e2307800120.
Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Controlled Release 2011, 151, 220–228.
Cao, W. R.; Li, R.; Pei, X.; Chai, M. H.; Sun, L.; Huang, Y. Y.; Wang, J. C.; Barth, S.; Yu, F.; He, H. N. Antibody-siRNA conjugates (ARC): Emerging siRNA drug formulation. Med. Drug Discov. 2022, 15, 100128.
Scott, L. J. Givosiran: First approval. Drugs 2020, 80, 335–339.
Biscans, A.; Coles, A.; Haraszti, R.; Echeverria, D.; Hassler, M.; Osborn, M.; Khvorova, A. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res. 2019, 47, 1082–1096.
Osborn, M. F.; Khvorova, A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther. 2018, 28, 128–136.
Adhipandito, C. F.; Cheung, S. H.; Lin, Y. H.; Wu, S. H. Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. Int. J. Mol. Sci. 2021, 22, 11182.
Kang, M. R.; Yang, G.; Place, R. F.; Charisse, K.; Epstein-Barash, H.; Manoharan, M.; Li, L. C. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res. 2012, 72, 5069–5079.
Semple, S. C.; Akinc, A.; Chen, J. X.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W. Y.; Stebbing, D.; Crosley, E. J.; Yaworski, E. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176.
Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D. W. Y. RNAi therapeutics: A potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2006, 2, 711–719.
Wang, L. L.; Guo, H. H.; Zhan, Y.; Feng, C. L.; Huang, S.; Han, Y. X.; Zheng, W. S.; Jiang, J. D. Specific up-regulation of p21 by a small active RNA sequence suppresses human colorectal cancer growth. Oncotarget 2017, 8, 25055–25065.
Ren, S. C.; Kang, M. R.; Wang, J.; Huang, V.; Place, R. F.; Sun, Y. H.; Li, L. C. Targeted induction of endogenous NKX3-1 by small activating RNA inhibits prostate tumor growth. Prostate 2013, 73, 1591–1601.
Place, R. F.; Noonan, E. J.; Földes-Papp, Z.; Li, L. C. Defining features and exploring chemical modifications to manipulate RNAa activity. Curr. Pharm. Biotechnol. 2010, 11, 518–526.
Rodrigueza, W. V. Woolliscroft, M. J.; Ebrahim, A. S.; Forgey, R.; Mcgovren, P. J.; Endert, G.; Wagner, A.; Holewa, D.; Aboukameel, A.; Gill, R. D. et al. Development and antitumor activity of a BCL-2 targeted single-stranded DNA oligonucleotide. Cancer Chemother. Pharmacol 2014, 74, 151–166.
Reebye, V.; Huang, K. W.; Lin, V.; Jarvis, S.; Cutilas, P.; Dorman, S.; Ciriello, S.; Andrikakou, P.; Voutila, J.; Saetrom, P. et al. Gene activation of CEBPA using saRNA: Preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene 2018, 37, 3216–3228.
Abedi-Gaballu, F.; Dehghan, G.; Ghaffari, M.; Yekta, R.; Abbaspour-Ravasjani, S.; Baradaran, B.; Dolatabadi, J. E. N.; Hamblin, M. R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today 2018, 12, 177–190.
Liu, J.; Gray, W. D.; Davis, M. E.; Luo, Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012, 2, 307–324.
Roberts, J. C.; Bhalgat, M. K.; Zera, R. T. Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. 3.0.CO;2-Q">J. Biomed. Mater. Res. 1996, 30, 53–65.
Neerman, M. F.; Zhang, W.; Parrish, A. R.; Simanek, E. E. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int. J. Pharm. 2004, 281, 129–132.
Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. Dendrimers:: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Controlled Release 2000, 65, 133–148.
Han, M.; Huang-Fu, M. Y.; Guo, W. W.; Guo, N. N.; Chen, J. J.; Liu, H. N.; Xie, Z. Q.; Lin, M. T.; Wei, Q. C.; Gao, J. Q. MMP-2-sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor. ACS Appl. Mater. Interfaces 2017, 9, 42459–42470.
Karatasos, K.; Posocco, P.; Laurini, E.; Pricl, S. Poly(amidoamine)-based dendrimer/siRNA complexation studied by computer simulations: Effects of pH and generation on dendrimer structure and siRNA binding. Macromol. Biosci. 2012, 12, 225–240.
Parton, R. G.; Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007, 8, 185–194.
Hansen, C. G.; Nichols, B. J. Molecular mechanisms of clathrin-independent endocytosis. J. Cell Sci. 2009, 122, 1713–1721.
Kaminskas, L. M.; Boyd, B. J.; Porter, C. J. H. Dendrimer pharmacokinetics: The effect of size, structure and surface characteristics on ADME properties. Nanomedicine 2011, 6, 1063–1084.
Opitz, A. W.; Czymmek, K. J.; Wickstrom, E.; Wagner, N. J. Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM dendrimers into pancreatic cancer cells. Biochim. Biophys. Acta 2013, 1828, 294–301.
Freeman, E. C.; Weiland, L. M.; Meng, W. S. Modeling the proton sponge hypothesis: Examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. J. Biomater. Sci. Polym. Ed. 2013, 24, 398–416.
Reebye, V.; Sætrom, P.; Mintz, P. J.; Huang, K. W.; Swiderski, P.; Peng, L.; Liu, C.; Liu, X. X.; Lindkær-Jensen, S.; Zacharoulis, D. et al. A novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology 2014, 59, 216–227.
Zhou, J. H.; Wu, J. Y.; Hafdi, N.; Behr, J. P.; Erbacher, P.; Peng, L. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem. Commun. 2006, 2362–2364.
Wu, J. Y.; Zhou, J. H.; Qu, F. Q.; Bao, P. H.; Zhang, Y.; Peng, L. Polycationic dendrimers interact with RNA molecules: Polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chem. Commun. 2005, 313–315.
Huan, H. B.; Wen, X. D.; Chen, X. J.; Wu, L. L.; Liu, W. H.; Habib, N. A.; Bie, P.; Xia, F. C/EBPα short-activating RNA suppresses metastasis of hepatocellular carcinoma through inhibiting EGFR/β-catenin signaling mediated EMT. PLoS One 2016, 11, e0153117.
Xiong, Y. F.; Ke, R.; Zhang, Q. Y.; Lan, W. J.; Yuan, W. J.; Chan, K. N. I.; Roussel, T.; Jiang, Y. F.; Wu, J.; Liu, S. et al. Small activating RNA modulation of the G protein-coupled receptor for cancer treatment. Adv. Sci. 2022, 9, 2200562.
George, A. J.; Thomas, W. G.; Hannan, R. D. The renin-angiotensin system and cancer: Old dog, new tricks. Nat. Rev. Cancer 2010, 10, 745–759.
Chen, J. X.; Zhu, D. D.; Liu, X. X.; Peng, L. Amphiphilic dendrimer vectors for RNA delivery: State-of-the-art and future perspective. Acc. Mater. Res. 2022, 3, 484–497.
Liu, X. X.; Zhou, J. H.; Yu, T. Z.; Chen, C.; Cheng, Q.; Sengupta, K.; Huang, Y. Y.; Li, H. T.; Liu, C.; Wang, Y. et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew. Chem., Int. Ed. 2014, 53, 11822–11827.
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials 2020, 13, 65.
Li, X.; Naeem, A.; Xiao, S. H.; Hu, L.; Zhang, J.; Zheng, Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics 2022, 14, 1292.
Han, M. H.; Chen, J.; Wang, J.; Chen, S. L.; Wang, X. T. Blood compatibility of polyamidoamine dendrimers and erythrocyte protection. J. Biomed. Nanotechnol. 2010, 6, 82–92.
Lee, H.; Larson, R. G. Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: The effect of molecular shape. J. Phys. Chem. B 2008, 112, 12279–12285.
Tsujimoto, A.; Uehara, H.; Yoshida, H.; Nishio, M.; Furuta, K.; Inui, T.; Matsumoto, A.; Morita, S.; Tanaka, M.; Kojima, C. Different hydration states and passive tumor targeting ability of polyethylene glycol-modified dendrimers with high and low PEG density. Mater. Sci. Eng. C 2021, 126, 112159.
Diaz, C.; Benitez, C.; Vidal, F.; Barraza, L. F.; Jiménez, V. A.; Guzman, L.; Fuentealba, J.; Yevenes, G. E.; Alderete, J. B. Cytotoxicity and in vivo plasma kinetic behavior of surface-functionalized PAMAM dendrimers. Nanomedicine Nanotechnol. Biol. Med. 2018, 14, 2227–2234.
Wang, L. L.; Feng, C. L.; Zheng, W. S.; Huang, S.; Zhang, W. X.; Wu, H. N.; Zhan, Y.; Han, Y. X.; Wu, S.; Jiang, J. D. Tumor-selective lipopolyplex encapsulated small active RNA hampers colorectal cancer growth in vitro and in orthotopic murine. Biomaterials 2017, 141, 13–28.
Son, S.; Singha, K.; Kim, W. J. Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier. Biomaterials 2010, 31, 6344–6354.
Moffatt, S.; Wiehle, S.; Cristiano, R. J. Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine-DNA polyplex targeting aminopeptidase N/CD13. Human Gene Therapy 2005, 16, 57–67.
Ren, Y.; Cheung, H. W.; Von Maltzhan, G.; Agrawal, A.; Cowley, G. S.; Weir, B. A.; Boehm, J. S.; Tamayo, P.; Karst, A. M.; Liu, J. F. et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci. Transl. Med. 2012, 4, 147ra112.
Zhou, G. Y.; Xu, Y. M.; Chen, M. W.; Cheng, D.; Shuai, X. T. Tumor-penetrating peptide modified and pH-sensitive polyplexes for tumor targeted siRNA delivery. Polym. Chem. 2016, 7, 3857–3863.
Chen, Q. X.; Osada, K.; Ge, Z. S.; Uchida, S.; Tockary, T. A.; Dirisala, A.; Matsui, A.; Toh, K.; Takeda, K. M.; Liu, X. Y. et al. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials 2017, 113, 253–265.
Keefe, A. D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discovery 2010, 9, 537–550.
Alshaer, W.; Hillaireau, H.; Fattal, E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv. Drug Deliv. Rev. 2018, 134, 122–137.
Zhou, J. H.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discovery 2017, 16, 181–202.
Ara, M. N.; Matsuda, T.; Hyodo, M.; Sakurai, Y.; Hatakeyama, H.; Ohga, N.; Hida, K.; Harashima, H. An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials 2014, 35, 7110–7120.
Yoon, S.; Huang, K. A.; Reebye, V.; Mintz, P.; Tien, Y. W.; Lai, H. S.; Sætrom, P.; Reccia, I.; Swiderski, P.; Armstrong, B. et al. Targeted delivery of C/EBPα-saRNA by pancreatic ductal adenocarcinoma-specific RNA aptamers inhibits tumor growth in vivo. Mol. Ther. 2016, 24, 1106–1116.
Li, C. L.; Jiang, W. C.; Hu, Q. T.; Li, L. C.; Dong, L.; Chen, R. B.; Zhang, Y. H.; Tang, Y. Z.; Thrasher, J. B.; Liu, C. B. et al. Enhancing DPYSL3 gene expression via a promoter-targeted small activating RNA approach suppresses cancer cell motility and metastasis. Oncotarget 2016, 7, 22893–22910.
Setten, R. L.; Lightfoot, H. L.; Habib, N. A.; Rossi, J. J. Development of MTL-CEBPA: Small activating RNA drug for hepatocellular carcinoma. Curr. Pharm. Biotechnol. 2018, 19, 611–621.
Witzigmann, D.; Kulkarni, J. A.; Leung, J.; Chen, S.; Cullis, P. R.; van der Meel, R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Delivery Rev. 2020, 159, 344–363.
Cheng, X. X.; Xie, Q. R.; Sun, Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151.
Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.
Wang, X.; Liu, S.; Sun, Y. H.; Yu, X. L.; Lee, S. M.; Cheng, Q.; Wei, T.; Gong, J. Y.; Robinson, J.; Zhang, D. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protocols 2023, 18, 265–291.
Paunovska, K.; Sago, C. D.; Monaco, C. M.; Hudson, W. H.; Castro, M. G.; Rudoltz, T. G.; Kalathoor, S.; Vanover, D. A.; Santangelo, P. J.; Ahmed, R. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 2018, 18, 2148–2157.
Sago, C. D.; Lokugamage, M. P.; Paunovska, K.; Vanover, D. A.; Monaco, C. M.; Shah, N. N.; Castro, M. G.; Anderson, S. E.; Rudoltz, T. G.; Lando, G. N. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl. Acad. Sci. USA 2018, 115, E9944–E9952.
Hassett, K. J.; Higgins, J.; Woods, A.; Levy, B.; Xia, Y.; Hsiao, C. J.; Acosta, E.; Almarsson, Ö.; Moore, M. J.; Brito, L. A. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J. Controlled Release 2021, 335, 237–246.
Gregory, G. L.; Copple, I. M. Modulating the expression of tumor suppressor genes using activating oligonucleotide technologies as a therapeutic approach in cancer. Mol. Ther. Nucleic Acids 2023, 31, 211–223.
Lourenço, A. R.; Coffer, P. J. A tumor suppressor role for C/EBPα in solid tumors: More than fat and blood. Oncogene 2017, 36, 5221–5230.
Bu, L.; Wang, H.; Pan, J. A. Chen, L.; Xing, F.; Wu, J. Y.; Li, S.; Guo, D. Y. PTEN suppresses tumorigenesis by directly dephosphorylating Akt. Signal Transduct. Target. Ther 2021, 6, 262.
Nag, S.; Qin, J. J.; Srivenugopal, K. S.; Wang, M. H.; Zhang, R. W. The MDM2-p53 pathway revisited. J. Biomed. Res. 2013, 27, 254–271.
Sarker, D.; Plummer, R.; Meyer, T.; Sodergren, M. H.; Basu, B.; Chee, C. E.; Huang, K. W.; Palmer, D. H.; Ma, Y. T.; Evans, T. R. J. et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: A first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res. 2020, 26, 3936–3946.
Hashimoto, A.; Sarker, D.; Reebye, V.; Jarvis, S.; Sodergren, M. H.; Kossenkov, A.; Sanseviero, E.; Raulf, N.; Vasara, J.; Andrikakou, P. et al. Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin. Cancer Res. 2021, 27, 5961–5978.
Jarvelainen, H.; Lin, W. H.; Kang, M.; Zhou, X. J.; Place, R. F.; Li, L. C. Preclinical development of RAG1-40-31L: A novel small activating RNA-lipid conjugate targeting tumor suppressor gene p21 for treatment of non-muscle invasive bladder cancer. J. Clin. Oncol. 2023, 41, e16620.