AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective Review

Electrocatalytic coupling of anodic nitrogen oxidation and cathodic nitrate reduction for ammonia synthesis from air and water

Aijing Ma1Jianzhou Gui1Yanmei Huang2( )Yifu Yu2( )
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

A novel strategy was proposed for ammonia electrosynthesis from air and water based on the coupling of anodic nitrogen oxidation and cathodic nitrate reduction. Possible methods for breaking the bottlenecks of each part are discussed separately. After that, key issues that need to be considered in the coupled system are proposed for the application of this strategy.

Abstract

Ammonia plays a vital role in present agriculture and industry, and is also regarded as a next-generation clean energy carrier. The development of electrocatalysis raises an opportunity to make ammonia synthesis compatible with intermittent and variable renewable energy sources such as solar and wind energy. However, the direct ammonia electrosynthesis from N2 reduction is still challenging due to the much easier hydrogen evolution competition reaction. In this perspective, we propose a novel strategy for ammonia electrosynthesis from air and water based on the coupling of anodic nitrogen oxidation and cathodic nitrate reduction. Possible methods for breaking the bottlenecks of anodic nitrogen oxidation and cathodic nitrate reduction are discussed separately. After that, key issues that need to be considered in the coupled system are proposed for the application of this strategy.

References

[1]

Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.

[2]

Lim, J.; Fernández, C. A.; Lee, S. W.; Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 2021, 6, 3676–3685.

[3]

Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2019, 2, 377–380.

[4]

Huang, Y. M.; Yang, R.; Wang, C. H.; Meng, N. N.; Shi, Y. M.; Yu, Y. F.; Zhang, B. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 2022, 7, 284–291.

[5]

Wan, H.; Bagger, A.; Rossmeisl, J. Limitations of electrochemical nitrogen oxidation toward nitrate. J. Phys. Chem. Lett. 2022, 13, 8928–8934.

[6]

Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

[7]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

[8]

Wang, Y. T.; Yu, Y. F.; Jia, R. R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730–738.

[9]

Han, S. H.; Wang, C. H.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets. Angew. Chem., Int. Ed. 2021, 60, 4474–4478.

[10]

Dai, C. C.; Sun, Y. M.; Chen, G.; Fisher, A. C.; Xu, Z. J. Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew. Chem., Int. Ed. 2020, 59, 9418–9422.

[11]

Li, T. L.; Han, S. H.; Wang, C. H.; Huang, Y. M.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Ru-doped Pd nanoparticles for nitrogen electrooxidation to nitrate. ACS Catal. 2021, 11, 14032–14037.

[12]

Nie, Z. F.; Zhang, L. L.; Ding, X.; Cong, M. Y.; Xu, F. F.; Ma, L. H.; Guo, M. X.; Li, M. Z.; Zhang, L. X. Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru-nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru atoms. Adv. Mater. 2022, 34, 2108180.

[13]

Wang, Y. T.; Li, T. L.; Yu, Y. F.; Zhang, B. Electrochemical synthesis of nitric acid from nitrogen oxidation. Angew. Chem., Int. Ed. 2022, 61, e202115409.

[14]

Dong, K.; Yao, Y. C.; Li, H. B.; Li, H. J. W.; Sun, S. J.; He, X.; Wang, Y.; Luo, Y. S.; Zheng, D. D.; Liu, Q. et al. H2O2-mediated electrosynthesis of nitrate from air. Nat. Synth. 2024, 3, 763–773.

[15]

Anand, M.; Abraham, C. S.; Nørskov, J. K. Electrochemical oxidation of molecular nitrogen to nitric acid-towards a molecular level understanding of the challenges. Chem. Sci. 2021, 12, 6442–6448.

[16]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[17]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[18]

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

[19]

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

[20]

Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

[21]

Xue, S.; Gao, Y.; Wang, B.; Zhi, L. J. Effects of external physical fields on electrocatalysis. Chem Catal. 2023, 3, 100762.

[22]

Luo, L.; Xu, L.; Wang, Q. Y.; Shi, Q. W.; Zhou, H.; Li, Z. H.; Shao, M. F.; Duan, X. Recent advances in external fields-enhanced electrocatalysis. Adv. Energy Mater. 2023, 13, 2301276.

[23]

Contreras, E.; Nixon, R.; Litts, C.; Zhang, W. X.; Alcorn, F. M.; Jain, P. K. Plasmon-assisted ammonia electrosynthesis. J. Am. Chem. Soc. 2022, 144, 10743–10751.

[24]

Wu, X. H.; Wang, J. H.; Wang, Z. Y.; Sun, F.; Liu, Y. Z.; Wu, K. F.; Meng, X. Y.; Qiu, J. S. Boosting the electrocatalysis of mxenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem., Int. Ed. 2021, 60, 9416–9420.

[25]

Zhang, B. S.; Wang, Y. T.; Zhang, N.; Zhu, J. W.; Ji, W. Y.; Chen, F. P.; Chen, X.; Yu, Y. F.; Zhang, B. Electromagnetic field-assisted low-temperature ammonia synthesis. Sci. Bull. 2023, 68, 1871–1874.

[26]

Iriawan, H.; Andersen, S. Z.; Zhang, X. L.; Comer, B. M.; Barrio, J.; Chen, P.; Medford, A. J.; Stephens, I. E. L.; Chorkendorff, I.; Shao-Horn, Y. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 2021, 1, 56.

[27]

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

[28]

Sui, Y.; Ji, X. L. Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 2021, 121, 6654–6695.

[29]

Zhao, J. W.; Zhang, J.; Yang, W. H.; Chen, B. B.; Zhao, Z. M.; Qiu, H. Y.; Dong, S. M.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 2019, 57, 625–634

[30]

Shen, P.; Li, X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2− x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.

[31]

Xie, J.; Liang, Z. J.; Lu, Y. C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 2020, 19, 1006–1011.

[32]

Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

[33]

Huang, Y. M.; Long, J.; Wang, Y. T.; Meng, N. N.; Yu, Y. F.; Lu, S. Y.; Xiao, J. P.; Zhang, B. Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2021, 13, 54967–54973.

[34]

Zhang, H. R.; Wang, H. J.; Cao, X. Q.; Chen, M. S.; Liu, Y. L.; Zhou, Y. T.; Huang, M.; Xia, L.; Wang, Y.; Li, T. S. et al. Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion. Adv. Mater. 2024, 36, 2312746.

[35]

Liu, X. W.; Liu, C. Z.; He, X.; Cai, Z. W.; Dong, K.; Li, J.; Fan, X. Y.; Xie, T.; Yang, X. Y.; Luo, Y. L. et al. Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction. Nano Res. 2024, 17, 2276–2282.

[36]

Li, Y.; Kan, Z. W.; Jia, L. N.; Zhang, D.; Hong, Y.; Liu, J. J.; Huang, H. B.; Li, S. Q.; Liu, S. Elucidating the role of mass transfer in electrochemical redox reactions on electrospun fibers. Trans. Tianjin Univ. 2023, 29, 313–320.

[37]

Wang, Y. B.; Qin, Y. T.; Li, W.; Wang, Y. T.; Zhu, L. N.; Zhao, M. T.; Yu, Y. F. Controllable NO release for catheter antibacteria from nitrite electroreduction over the Cu-MOF. Trans. Tianjin Univ. 2023, 29, 275–283.

[38]

Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

[39]

Li, J.; Zhan, G. M.; Yang, J. H.; Quan, F. J.; Mao, C. L.; Liu, Y.; Wang, B.; Lei, F. C.; Li, L. J.; Chan, A. W. M. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036–7046.

[40]

Da Cunha, M. C. P. M.; Weber, M.; Nart, F. C. On the adsorption and reduction of NO3 ions at Au and Pt electrodes studied by in situ FTIR spectroscopy. J. Electroanal. Chem. 1996, 414, 163–170.

[41]

Zou, X. Y.; Chen, C. J.; Wang, C. H.; Zhang, Q.; Yu, Z. W.; Wu, H. P.; Zhuo, C.; Zhang, T. C. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review. Sci. Total Environ. 2021, 800, 149645.

[42]

Liang, J.; Li, Z. X.; Zhang, L. C.; He, X.; Luo, Y. S.; Zheng, D. D.; Wang, Y.; Li, T. S.; Yan, H.; Ying, B. W. et al. Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 1768–1827.

[43]

Ouyang, L.; Liang, J.; Luo, Y. S.; Zheng, D. D.; Sun, S. J.; Liu, Q.; Hamdy, M. S.; Sun, X. P.; Ying, B. W. Recent advances in electrocatalytic ammonia synthesis. Chin. J. Catal. 2023, 50, 6–44.

[44]

Han, S. H.; Li, H. J.; Li, T. L.; Chen, F. P.; Yang, R.; Yu, Y. F.; Zhang, B. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 2023, 6, 402–414.

[45]

Huang, Y. M.; He, C. H.; Cheng, C. Q.; Han, S. H.; He, M.; Wang, Y. T.; Meng, N. N.; Zhang, B.; Lu, Q. P.; Yu, Y. F. Pulsed electroreduction of low-concentration nitrate to ammonia. Nat. Commun. 2023, 14, 7368.

[46]

Li, P. P.; Li, R.; Liu, Y. T.; Xie, M. H.; Jin, Z. Y.; Yu, G. H. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J. Am. Chem. Soc. 2023, 145, 6471–6479.

[47]

Guo, M. X.; Fang, L.; Zhang, L. L.; Li, M. Z.; Cong, M. Y.; Guan, X. P.; Shi, C. W.; Gu, C. L.; Liu, X.; Wang, Y. et al. Pulsed electrocatalysis enabling high overall nitrogen fixation performance for atomically dispersed Fe on TiO2. Angew. Chem., Int. Ed. 2023, 62, e202217635.

[48]

Casebolt, R.; Levine, K.; Suntivich, J.; Hanrath, T. Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. Joule 2021, 5, 1987–2026.

[49]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[50]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[51]

Li, P. P.; Liao, L.; Fang, Z. W.; Su, G. H.; Jin, Z. Y.; Yu, G. H. A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Proc. Natl. Acad. Sci. USA 2023, 120, e2305489120.

[52]

Wang, X. X.; Wu, X. H.; Ma, W.; Zhou, X. C.; Zhang, S.; Huang, D. H.; Winter, L. R.; Kim, J. H.; Elimelech, M. Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proc. Natl. Acad. Sci. USA 2023, 120, e2217703120.

Nano Research
Pages 7824-7829
Cite this article:
Ma A, Gui J, Huang Y, et al. Electrocatalytic coupling of anodic nitrogen oxidation and cathodic nitrate reduction for ammonia synthesis from air and water. Nano Research, 2024, 17(9): 7824-7829. https://doi.org/10.1007/s12274-024-6863-3
Topics:

543

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 June 2024
Revised: 03 July 2024
Accepted: 03 July 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return