AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Determination of multilevel chirality in nickel molybdate films by electron crystallography

Jing Ai1,2Yu Wang1( )Liyuan Li1Jianqiang Wang1( )Te Bai3Shunai Che3Lu Han2( )
Sinopec (Shanghai) Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

We report three hierarchical levels of chirality in chiral nickel molybdate films (CNMFs), including primary torsional crystal lattice chirality, secondary helical stacking chirality, and tertiary asymmetric morphology by a comprehensive electron crystallography analytical path.

Abstract

Chiral inorganic materials have attracted great attention owning to their unique physical and chemical properties attributed to the symmetry-breaking of their nanostructures. Chiral inorganic materials can be endowed with chiral geometric configurations from achiral space group crystals through lattice twisting, screw dislocations or hierarchical self-assembled spiral morphologies, showing various characteristic chiral anisotropy. However, the multilevel chirality in chiral nickel molybdate films (CNMFs) remains to be elaborately excavated. In this paper, we report three hierarchical levels of chirality in CNMFs, spanning from the atomic to the micron scale, including primary helically coiled nanoflakes with twisted atomic crystal lattices, secondary helical stacking of layered nanoflakes, and tertiary asymmetric morphology between adjacent nanoparticles. Our findings may enrich the chiral self-assembly structural types and provide valuable insights for the comprehensive analysis path of hierarchical chiral crystals.

Electronic Supplementary Material

Download File(s)
6865_ESM.pdf (2.1 MB)

References

[1]

Yeom, J.; Yeom, B.; Chan, H.; Smith, K. W.; Dominguez-Medina, S.; Bahng, J. H.; Zhao, G. P.; Chang, W. S.; Chang, S. J.; Chuvilin, A. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 2015, 14, 66–72.

[2]

Ma, W.; Xu, L. G.; De Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041–8093.

[3]

Gao, Q.; Tan, L. L.; Wen, Z. H.; Fan, D. D.; Hui, J. F.; Wang, P. P. Chiral inorganic nanomaterials: Harnessing chirality-dependent interactions with living entities for biomedical applications. Nano Res. 2023, 16, 11107–11124.

[4]

Dutta, S.; Gellman, A. J. Enantiomer surface chemistry: Conglomerate versus racemate formation on surfaces. Chem. Soc. Rev. 2017, 46, 7787–7839.

[5]

James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 1995, 374, 345–347.

[6]

Patterson, D.; Schnell, M.; Doyle, J. M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 2013, 497, 475–477.

[7]

Riehl, J. P.; Richardson, F. S. Circularly polarized luminescence spectroscopy. Chem. Rev. 1986, 86, 1–16.

[8]

Sun, Y. M.; Jiang, Y. Q.; Jiang, J.; Li, T. S.; Liu, M. H. Keto-form directed hierarchical chiral self-assembly of Schiff base derivatives with amplified circularly polarized luminescence. Chin. Chem. Lett. 2024, 35, 108409.

[9]

Bartók, M. Unexpected inversions in asymmetric reactions: Reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiral catalysts. Chem. Rev. 2010, 110, 1663–1705.

[10]

Baiker, A. Crucial aspects in the design of chirally modified noble metal catalysts for asymmetric hydrogenation of activated ketones. Chem. Soc. Rev. 2015, 44, 7449–7464.

[11]

Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

[12]

Naaman, R.; Waldeck, D. H. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. Ann. Rev. Phys. Chem. 2015, 66, 263–281.

[13]

Kondepudi, D. K.; Kaufman, R. J.; Singh, N. Chiral symmetry breaking in sodium chlorate crystallization. Science 1990, 250, 975–976.

[14]

Hazen, R. M.; Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2003, 2, 367–374.

[15]

Long, G. K.; Sabatini, R.; Saidaminov, M. I.; Lakhwani, G.; Rasmita, A.; Liu, X. G.; Sargent, E. H.; Gao, W. B. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 2020, 5, 423–439.

[16]

Ma, Y. H.; Oleynikov, P.; Terasaki, O. Electron crystallography for determining the handedness of a chiral zeolite nanocrystal. Nat. Mater. 2017, 16, 755–759.

[17]

Ben-Moshe, A.; Wolf, S. G.; Sadan, M. B.; Houben, L.; Fan, Z. Y.; Govorov, A. O.; Markovich, G. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 2014, 5, 4302.

[18]

Sutter, P.; Wimer, S.; Sutter, E. Chiral twisted van der Waals nanowires. Nature 2019, 570, 354–357.

[19]

Morin, S. A.; Bierman, M. J.; Tong, J.; Jin, S. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 2010, 328, 476–480.

[20]

Zhu, Y. H.; He, J. T.; Shang, C.; Miao, X. H.; Huang, J. F.; Liu, Z. P.; Chen, H. Y.; Han, Y. Chiral gold nanowires with boerdijk-coxeter-bernal structure. J. Am. Chem. Soc. 2014, 136, 12746–12752.

[21]

Ni, B.; Zhou, J.; Stolz, L.; Cölfen, H. A facile and rational method to tailor the symmetry of Au@Ag nanoparticles. Adv. Mater. 2023, 35, 2209810.

[22]

Che, S. N.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281–284.

[23]

Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Supramolecular templating of single and double nanohelices of cadmium sulfide. Small 2005, 1, 694–697.

[24]

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

[25]

Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

[26]

Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. G. et al. Optically active nanostructured ZnO films. Angew. Chem., Int. Ed. 2015, 54, 15170–15175.

[27]

Ma, L. G.; Cao, Y. Y.; Duan, Y. Y.; Han, L.; Che, S. N. Silver films with hierarchical chirality. Angew. Chem., Int. Ed. 2017, 56, 8657–8662.

[28]

Liu, Z. X.; Ai, J.; Kumar, P.; You, E. M.; Zhou, X.; Liu, X.; Tian, Z. Q.; Bouř, P.; Duan, Y. Y.; Han, L. et al. Enantiomeric discrimination by surface-enhanced Raman scattering-chiral anisotropy of chiral nanostructured gold films. Angew. Chem., Int. Ed. 2020, 59, 15226–15231.

[29]

Duan, Y. Y.; Liu, X.; Han, L.; Asahina, S.; Xu, D. D.; Cao, Y. Y.; Yao, Y.; Che, S. N. Optically active chiral CuO “Nanoflowers”. J. Am. Chem. Soc. 2014, 136, 7193–7196.

[30]

Liu, S. H.; Han, L.; Duan, Y. Y.; Asahina, S.; Terasaki, O.; Cao, Y. Y.; Liu, B.; Ma, L. G.; Zhang, J. L.; Che, S. N. Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat. Commun. 2012, 3, 1215.

[31]

Mastroianni, A. J.; Claridge, S. A.; Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 2009, 131, 8455–8459.

[32]

Ma, W.; Kuang, H.; Xu, L. G.; Ding, L.; Xu, C. L.; Wang, L. B.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.

[33]

Liu, M. C.; Kang, L.; Kong, L. B.; Lu, C.; Ma, X. J.; Li, X. M.; Luo, Y. C. Facile synthesis of NiMoO4· xH2O nanorods as a positive electrode material for supercapacitors. RSC Adv. 2013, 3, 6472–6478.

[34]

Guo, D.; Zhang, P.; Zhang, H. M.; Yu, X. Z.; Zhu, J.; Li, Q. H.; Wang, T. H. NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J. Mater. Chem. A 2013, 1, 9024–9027.

[35]

Qu, G.; Li, T. Q.; Jia, S. F.; Zheng, H.; Li, L.; Cao, F.; Wang, H.; Ma, W. H.; Tang, Y. W.; Wang, J. B. Rapid and scalable synthesis of Mo-based binary and ternary oxides for electrochemical applications. Adv. Funct. Mater. 2017, 27, 1700928.

[36]

Ghosh, D.; Giri, S.; Das, C. K. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4· nH2O nanorods. Nanoscale 2013, 5, 10428–10437.

[37]

Cai, D. P.; Wang, D. D.; Liu, B.; Wang, Y. R.; Liu, Y.; Wang, L. L.; Li, H.; Huang, H.; Li, Q. H.; Wang, T. H. Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 12905–12910.

[38]

Liu, H. L.; Li, H. Y.; He, P. L.; Wang, X. Sub-1 nm nickel molybdate nanowires as building blocks of flexible paper and electrochemical catalyst for water oxidation. Small 2016, 12, 1006–1012.

[39]

Ai, J.; Zhang, X. L.; Bai, T.; Shen, Q.; Oleynikov, P.; Duan, Y. Y.; Terasaki, O.; Che, S. N.; Han, L. Synchronous quantitative analysis of chiral mesostructured inorganic crystals by 3D electron diffraction tomography. Nat. Commun. 2022, 13, 5718.

[40]

Ehrenberg, H.; Svoboda, I.; Wltschek, G.; Wiesmann, M.; Trouw, F.; Weitzel, H.; Fuess, H. Crystal and magnetic structure of α-NiMoO4. J. Magn. Magn. Mater. 1995, 150, 371–376.

[41]

Bai, T.; Ai, J.; Ma, J.; Duan, Y. Y.; Han, L.; Jiang, J. G.; Che, S. N. Resistance-chiral anisotropy of chiral mesostructured half-metallic Fe3O4 films. Angew. Chem., Int. Ed. 2021, 60, 20036–20041.

[42]

Zhou, C.; Zhang, X. L.; Ai, J.; Ji, T.; Nagai, M.; Duan, Y. Y.; Che, S. N.; Han, L. Chiral hierarchical structure of bone minerals. Nano Res. 2022, 15, 1295–1302.

[43]

Ding, K.; Ai, J.; Chen, H.; Qu, Z. B.; Liu, P. Z.; Han, L.; Che, S. N.; Duan, Y. Y. Spin selectivity of chiral mesostructured diamagnetic BiOBr films. Nano Res. 2023, 16, 11444–11449.

[44]

Jiang, W. G.; Pacella, M. S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R. M.; Gray, J. J.; McKee, M. D. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 2017, 8, 15066.

Nano Research
Pages 8571-8577
Cite this article:
Ai J, Wang Y, Li L, et al. Determination of multilevel chirality in nickel molybdate films by electron crystallography. Nano Research, 2024, 17(9): 8571-8577. https://doi.org/10.1007/s12274-024-6865-1
Topics:

466

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 March 2024
Revised: 03 July 2024
Accepted: 03 July 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return