Silicon monoxide (SiO) is widely recognized as a promising anode material for next-generation lithium-ion batteries. Owing to its metastable amorphous structure, SiO exhibits a highly complex degree of crystallization at the microscopic level, which significantly influences its electrochemical behavior. As a consequence, accurately regulating the crystallization of SiO, and further establishing the relationship between crystallinity and electrochemical performance are very critical for SiO anodes. In this article, carbon-coated SiO materials with different crystallinity degrees were synthesized using lithium hydroxide monohydrate (LiOH·H2O) as a structural modifier to reveal this rule. Additionally, moderate amount of LiOH·H2O addition results in the forming of an oxygen-rich shell, which effectively inhibits the inward migration of oxygen atoms on the SiO surface and suppresses volume expansion. However, the crystallinity of SiO will gradually enhance and the crystalline phase appears with increasing the amount of LiOH·H2O, which will generate a deteriorative Li+ diffusion kinetic. After balancing the above two contradictions, a mass fraction of 1% LiOH·H2O for the additive yielded SiO@C-1, characterized by optimal crystallinity. SiO@C-1 demonstrates exceptional long-cycle stability with 74.8% capacity retention after 500 cycles at 1 A·g−1. Furthermore, it achieves a capacity retention of 52.2% even at a high density of 5 A·g−1. This study first reveals the relationship between SiO crystallinity and electrochemical performance, which efficiently guides the design of high-performance SiO anodes.
Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.
Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Gradient design for high-energy and high-power batteries. Adv. Mater. 2022, 34, 2202780.
Xing, F. F.; Bi, Z. H.; Su, F.; Liu, F. Y.; Wu, Z. S. Unraveling the design principles of battery-supercapacitor hybrid devices: From fundamental mechanisms to microstructure engineering and challenging perspectives. Adv. Energy Mater. 2022, 12, 2200594.
Wang, L.; Zhang, X.; Li, C.; Xu, Y. N.; An, Y. B.; Liu, W. J.; Hu, T.; Yi, S.; Wang, K.; Sun, X. Z. et al. Cation-deficient T-Nb2O5/graphene Hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors. Chem. Eng. J. 2023, 468, 143507.
Li, K. X.; Li, P.; Sun, Z. N.; Shi, J.; Huang, M. H.; Chen, J. W.; Liu, S.; Shi, Z. C.; Wang, H. L. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy Environ. 2023, 8, 1091–1101.
Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.
Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.
Zhu, J. X.; Lv, L.; Zaman, S.; Chen, X. B.; Dai, Y. H.; Chen, S. H.; He, G. J.; Wang, D. S.; Mai, L. Q. Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy Environ. Sci. 2023, 16, 4812–4833.
Zhang, R. R.; Xiao, Z. X.; Lin, Z. K.; Yan, X. H.; He, Z. Y.; Jiang, H. R.; Yang, Z.; Jia, X. L.; Wei, F. Unraveling the fundamental mechanism of interface conductive network influence on the fast-charging performance of SiO-based anode for lithium-ion batteries. Nano-Micro Lett. 2024, 16, 43.
Xiao, Z. X.; Yu, C. H.; Lin, X. Q.; Chen, X.; Zhang, C. X.; Wei, F. Uniform coating of nano-carbon layer on SiO x in aggregated fluidized bed as high-performance anode material. Carbon 2019, 149, 462–470.
Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y. T. Molten-LiCl induced thermochemical prelithiation of SiO x : Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Res. 2022, 15, 230–237.
Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.
Erhard, L. C.; Rohrer, J.; Albe, K.; Deringer, V. L. Modelling atomic and nanoscale structure in the silicon-oxygen system through active machine learning. Nat. Commun. 2024, 15, 1927.
Chen, F. Q.; Han, J. W.; Kong, D. B.; Yuan, Y. F.; Xiao, J.; Wu, S. C.; Tang, D. M.; Deng, Y. Q.; Lv, W.; Lu, J. et al. 1000 Wh·L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl. Sci. Rev. 2021, 8, nwab012.
Pan, S. Y.; Han, J. W.; Wang, Y. Q.; Li, Z. S.; Chen, F. Q.; Guo, Y.; Han, Z. S.; Xiao, K. F.; Yu, Z. C.; Yu, M. Y. et al. Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv. Mater. 2022, 34, 2203617.
Fu, J.; Wang, D.; Li, Y.; Liu, X. Z.; Zhang, R.; Liu, Z. Y.; Liu, P. D.; Zhang, L. J.; Li, X. F.; Wen, G. W. 3D printed silicon-based micro-lattices with ultrahigh areal/gravimetric capacities and robust structural stability for lithium-ion batteries. Nano Res. 2024, 17, 2693–2703.
Qiao, Y.; Yang, S. Y.; Ma, Z. Q.; Yang, Y. Y. C.; Hong, X.; Fu, Z. W. Solid-state corrosion of lithium for prelithiation of SiO x -C composite anode with carbon-incorporated lithium phosphorus oxynitride. Nano Res. 2022, 16, 8394–8404.
Long, Z. X.; Fu, R. S.; Ji, J. J.; Feng, Z. Y.; Liu, Z. P. Unveiling the effect of surface and bulk structure on electrochemical properties of disproportionated SiO x anodes. ChemNanoMat 2020, 6, 1127–1135.
Jing, J. Y.; Li, Q.; Li, C. Z.; Yang, Z. K.; Yu, G. C.; Bai, X.; Li, T. Synchronous modification to realize micron-SiO x anode with durable and superior electrochemical performance for lithium-ion batteries. Appl. Surf. Sci. 2023, 627, 157293.
Liu, Y. X.; Shao, R.; Jiang, R. Y.; Song, X. Y.; Jin, Z.; Sun, L. A review of existing and emerging binders for silicon anodic Li-ion batteries. Nano Res. 2023, 16, 6736–6752.
Qian, G. Y.; Li, Y. W.; Chen, H. B.; Xie, L.; Liu, T. C.; Yang, N.; Song, Y. L.; Lin, C.; Cheng, J. F.; Nakashima, N. et al. Revealing the aging process of solid electrolyte interphase on SiO x anode. Nat. Commun. 2023, 14, 6048.
He, Z. Y.; Xiao, Z. X.; Yue, H. J.; Jiang, Y. X.; Zhao, M. Y.; Zhu, Y. K.; Yu, C. H.; Zhu, Z. X.; Lu, F.; Jiang, H. R. et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes. Adv. Funct. Mater. 2023, 33, 2300094.
Zhang, K. Y.; Du, W. Z.; Qian, Z.; Lin, L. D.; Gu, X.; Yang, J.; Qian, Y. T. SiO x embedded in N-doped carbon nanoslices: A scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon 2021, 178, 202–210.
Yang, Z.; Li, Z. L.; Yang, Y. Z.; Zhang, Q.; Xie, H. L.; Wang, J.; Świerczek, K.; Zhao, H. L. Well-dispersed fe nanoclusters for effectively increasing the initial Coulombic efficiency of the SiO anode. ACS Nano 2023, 17, 7806–7812.
Fu, R. S.; Ji, J. J.; Yun, L.; Jiang, Y. B.; Zhang, J.; Zhou, X. F.; Liu, Z. P. Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability. Energy Storage Mater. 2021, 35, 317–326.
Ma, F.; Li, Y. B.; Liu, B.; Wu, J. K.; Wu, Y. H.; Lu, J.; Zhong, C.; Hu, W. B. 3D carbon coating enabled high-capacity and stable micro-sized silicon suboxide-graphite blended anodes for practical lithium-ion batteries. Batteries Supercaps 2023, 6, e202300124.
Xiao, Z. X.; Lin, X. Q.; Zhang, C. X.; Shen, J. Q.; Zhang, R. R.; He, Z. Y.; Lin, Z. K.; Jiang, H. R.; Wei, F. Insights into the coating integrity and its effect on the electrochemical performance of core–shell structure SiO x @C composite anodes. Small Methods 2023, 7, 2201623.
Shi, H. B.; Zhang, H.; Li, X. X.; Du, Y.; Hou, G. L.; Xiang, M. Q.; Lv, P. P.; Zhu, Q. S. In situ fabrication of dual coating structured SiO/1D-C/a-C composite as high-performance lithium ion battery anode by fluidized bed chemical vapor deposition. Carbon 2020, 168, 113–124.
Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y. W.; Fujita, T.; Chen, M. W. Atomic-scale disproportionation in amorphous silicon monoxide. Nat. Commun. 2016, 7, 11591.
Choi, G.; Kim, J.; Kang, B. Understanding limited reversible capacity of a SiO electrode during the first cycle and its effect on initial Coulombic efficiency. Chem. Mater. 2019, 31, 6097–6104.
Choi, G.; Kim, J.; Kang, B. High initial Coulombic efficiency of SiO enabled by controlling SiO2 matrix crystallization. ACS Appl. Mater. Interfaces 2022, 14, 44261–44270.
Li, J.; Guo, J. G.; Sun, Q.; Nie, X. K.; Dai, L. N.; Wang, Y.; Ci, L. J. Potassium ions regulated the disproportionation of silicon monoxide boosting its performance for lithium-ion battery anodes. Energy Fuels 2021, 35, 16202–16211.
Zhu, G. B.; Gu, Y. Y.; Heng, S.; Wang, Y.; Qu, Q. T.; Zheng, H. H. Simultaneous growth of SiO x /carbon bilayers on Si nanoparticles for improving cycling stability. Electrochim. Acta 2019, 323, 134840.
Zheng, G. R.; Xiang, Y. X.; Xu, L. F.; Luo, H.; Wang, B. L.; Liu, Y.; Han, X.; Zhao, W. M.; Chen, S. J.; Chen, H. L. et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 2018, 8, 1801718.
Wang, J. Y.; Wang, X. L.; Liu, B. N.; Lu, H.; Chu, G.; Liu, J.; Guo, Y. G.; Yu, X. Q.; Luo, F.; Ren, Y. et al. Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy 2020, 78, 105101.
Zhang, L. H.; Liu, Y. Z.; Guo, F. M.; Ren, Y.; Lu, W. Q. Optimal microstructure of silicon monoxide as the anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 51965–51974.
Li, D. N.; Yang, K.; Li, Y.; Li, F. F.; Xue, B. A porous lithium silicate ceramic separator prepared from diatomite: Effect of LiOH on pore structure, composition and electrochemical properties of the separator. J. Power Sour. 2021, 482, 228945.
Tao, J.; Wang, F.; Han, F.; He, Y. L.; Zhang, F. Q.; Liu, J. S. Improving the lithium storage performance of micro-sized SiO x particles by uniform carbon interphase encapsulation and suitable SiO2 buffer component. Electrochim. Acta 2021, 385, 138431.
San Andrés, E.; del Prado, A.; Martı́nez, F. L.; Mártil, I.; Bravo, D.; López, F. J. Rapid thermal annealing effects on the structural properties and density of defects in SiO2 and SiN x : H films deposited by electron cyclotron resonance. J. Appl. Phys. 2000, 87, 1187–1192.
Choi, G.; Kim, M.; Kang, B. A new design rule for developing SiO with high performance: Controlling short-range ordering of SiO2 phase. Adv. Energy Mater. 2023, 13, 2302362.
Zhu, J. X.; Li, J. T.; Lu, R. H.; Yu, R. H.; Zhao, S. Y.; Li, C. B.; Lv, L.; Xia, L. X.; Chen, X. B.; Cai, W. W. et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 2023, 14, 4670.
El-Rafei, M. A. Preparation and characterization of mesoporous amorphous nano-silica and nano-cristobalite for value enhancement of low-cost Egyptian waste materials. Ceram. Int. 2022, 48, 32185–32195.
Chung, D. J.; Youn, D.; Kim, J. Y.; Jeong, W. J.; Kim, S.; Ma, D.; Lee, T. R.; Kim, S. T.; Kim, H. Topology optimized prelithiated SiO anode materials for lithium-ion batteries. Small 2022, 18, 2202209.
Yoo, S.; Kim, J.; Kang, B. Characterizing local structure of SiO x using confocal μ-Raman spectroscopy and its effects on electrochemical property. Electrochim. Acta 2016, 212, 68–75.
Liu, K. L.; Yu, C.; Xie, Y. Y.; Guo, W.; Yu, J. H.; Ni, L.; Wang, Z.; Fu, R.; Qiu, J. S. Correlation between self-discharge behavior and heteroatoms over doped carbon sheets for enhanced pseudocapacitance. J. Energy Chem. 2022, 72, 291–298.
Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu, P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.
Hou, S. Y.; Yu, C.; Song, X. D.; Ding, Y. W.; Chang, J. W.; Liu, Y. B.; Chen, L.; Wei, Q. B.; Zhang, X. B.; Qiu, J. S. Modulating in-plane defective density of carbon nanotubes by graphitic carbon nitride quantum dots for enhanced triiodide reduction. Adv. Funct. Mater. 2023, 33, 2212112.
Kim, J. H.; Park, C. M.; Kim, H.; Kim, Y. J.; Sohn, H. J. Electrochemical behavior of SiO anode for Li secondary batteries. J. Electroanal. Chem. 2011, 661, 245–249.
Hohl, A.; Wieder, T.; van Aken, P. A.; Weirich, T. E.; Denninger, G.; Vidal, M.; Oswald, S.; Deneke, C.; Mayer, J.; Fuess, H. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J. Non-Cryst. Solids 2003, 320, 255–280.
Park, C. M.; Choi, W.; Hwa, Y.; Kim, J. H.; Jeong, G.; Sohn, H. J. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 2010, 20, 4854–4860.
Tan, T.; Lee, P. K.; Zettsu, N.; Teshima, K.; Yu, D. Y. W. Passivating oxygen atoms in SiO through pre-treatment with Na2CO3 to increase its first cycle efficiency for lithium-ion batteries. Electrochim. Acta 2022, 404, 139777.
Marler, B. On the relationship between refractive index and density for SiO2-polymorphs. Phys. Chem. Miner. 1988, 16, 286–290.
Tao, J. M.; Yan, Z. R.; Yang, J. S.; Li, J. X.; Lin, Y. B.; Huang, Z. G. Boosting the cell performance of the SiO x @C anode material via rational design of a Si-valence gradient. Carbon Energy 2022, 4, 129–141.
Chae, S.; Lim, H. K.; Lee, S. Energy landscapes for lithium incorporation and diffusion in multidomain silicon suboxide anode materials. ACS Appl. Mater. Interfaces 2023, 15, 57059–57069.
Xu, S.; Hou, X. D.; Wang, D. N.; Zuin, L.; Zhou, J. G.; Hou, Y.; Mann, M. Insights into the effect of heat treatment and carbon coating on the electrochemical behaviors of SiO anodes for Li-ion batteries. Adv. Energy Mater. 2022, 12, 2200127.
Hu, X. B.; Xu, P.; Liao, M. D.; Lu, X. Q.; Shen, G. B.; Zhong, C. H.; Zhang, M. Y.; Huang, Q. Z.; Su, Z. A. Amorphous SiO2 nanoparticles encapsulating a SiO anode with strong structure for high-rate lithium-ion batteries. ACS Appl. Energy Mater. 2024, 7, 774–784.
Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.
Yang, H.; Wan, Y.; Sun, K.; Zhang, M. D.; Wang, C. Z.; He, Z. Q.; Li, Q.; Wang, N.; Zhang, Y. L.; Hu, H. et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater. 2023, 33, 2215076.
Zhao, J. K.; Wang, B.; Zhan, Z. H.; Hu, M. Y.; Cai, F. P.; Świerczek, K.; Yang, K. M.; Ren, J. N.; Guo, Z. H.; Wang, Z. L. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes. J. Colloid Interface Sci. 2024, 664, 790–800.
Wang, Z.; Yu, C.; Zhao, C. T.; Guo, W.; Yu, J. H.; Qiu, J. S. Interface inversion: A promising strategy to configure ultrafine nanoparticles over graphene for fast sodium storage. Small 2021, 17, 2005119.
Zhao, Z. Y.; Chen, F. Q.; Han, J. W.; Kong, D. B.; Pan, S. Y.; Xiao, J.; Wu, S. C.; Yang, Q. H. Revival of microparticular silicon for superior lithium storage. Adv. Energy Mater. 2023, 13, 2300367.
Deng, D. N.; Wu, J.; Feng, Q. G.; Zhao, X.; Liu, M. J.; Bai, Y.; Wang, J. X.; Zheng, X. R.; Jiang, J. B.; Zhuang, Z. C. et al. Highly reversible zinc-air batteries at −40 °C enabled by anion-mediated biomimetic fat. Adv. Funct. Mater. 2024, 34, 2308762.
Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. Ag x Zn y protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.
Wu, W.; Kang, Y. Y.; Wang, M.; Xu, D. W.; Wang, J.; Cao, Y. L.; Wang, C. Y.; Deng, Y. H. An ultrahigh-areal-capacity SiO x negative electrode for lithium ion batteries. J. Power Sources 2020, 464, 228244.
Chu, F. L.; Zhou, J. W.; Liu, J. M.; Tang, F. C.; Song, L. B.; Wu, F. X. Constructing a fluorinated interface layer enriched with Ge nanoparticles and Li–Ge alloy for stable lithium metal anodes. Nano Res. 2024, 17, 5148–5158.
Ko, S.; Han, X.; Shimada, T.; Takenaka, N.; Yamada, Y.; Yamada, A. Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode. Nat. Sustain. 2023, 6, 1705–1714.
Xu, S.; Zhou, J. G.; Wang, J.; Pathiranage, S.; Oncel, N.; Robert Ilango, P.; Zhang, X.; Mann, M.; Hou, X. D. In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101645.
Lv, L.; Lu, R. H.; Zhu, J. X.; Yu, R. H.; Zhang, W.; Cui, E. H.; Chen, X. B.; Dai, Y. H.; Cui, L. M.; Li, J. et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2023, 62, e202303117.