α-AlH3 is regarded as one of the most promising hydrogen storage materials due to its high hydrogen storage capacity (10.1 wt.%, 148 kg·m−3). However, in practical applications, the associated hydrogen release temperature remains relatively high. To effectively address this issue, hollow structured Fe@C nanorods derived from Fe-MOF are introduced as highly efficient catalyst to optimize the dehydrogenation properties of α-AlH3. Comparatively, the initial hydrogen release temperature of α-AlH3 + 3 wt.% Fe@C is reduced to 94.2 °C, which is significantly lower than that of pure α-AlH3 (137.8 °C). At 100 and 120 °C, it exhibits hydrogen capacities of 5.38 wt.% and 7.47 wt.%, respectively, whereas pure α-AlH3 only delivers hydrogen capacities of 0.24 wt.% and 5.94 wt.% under the same temperatures. The density functional theory (DFT) calculations further indicate that the existence of Fe@C catalyst can make the length of Al–H bond increase, which is more conducive to the release of hydrogen. The results show that the synergistic effect of Fe and porous carbon in Fe@C nanorods can improve the hydrogen desorption kinetics of α-AlH3, providing a good prospect for the application of α-AlH3 in hydrogen storage fields.
Zhu, Z. Y.; Xia, D. B.; Li, Y. L.; Wang, P.; Lin, K. F.; Fan, J. Z.; Fan, R. Q.; Yang, Y. L. Synthesis and hydrogen desorption properties of nanoscale α-AlH3. Russ. J. Phys. Chem. A 2019, 93, 2798–2803.
Shi, Q. Y.; Gao, Y. X.; Zhao, S. L.; Zhang, C. M.; Liu, C.; Wang, C. L.; Wang, S. H.; Li, Y. Z.; Yin, D. M.; Wang, L. M. et al. Interfacial engineering of fluorinated TiO2 nanosheets with abundant oxygen vacancies for boosting the hydrogen storage performance of MgH2. Small 2024, 20, 2307965.
Lu, H.; Li, J. B.; Xie, T. Y.; Zhou, X.; Ding, Z.; Lu, Y. F.; Chen, Y. A.; Liu, Z. Q.; Li, Q.; Pan, F. S. Synergistic catalytic effects of AlH3-TiF3 composites on the hydrogen storage performance of MgH2. J. Phys. Chem. C 2023, 127, 92–98.
Duan, C. W.; Su, Z. H.; Cao, Y. Z.; Hu, L. X.; Fu, D.; Ma, J. L.; Zhang, Y. L. Synthesis of core–shell α-AlH3@Al(OH)3 nanocomposite with improved low-temperature dehydriding properties by mechanochemical mixing and ionic liquid treatment. J. Clean. Prod. 2021, 283, 124635.
Wang, L.; Rawal, A.; Aguey-Zinsou, K. F. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chem. Eng. Sci. 2019, 194, 64–70.
Sandrock, G.; Reilly, J.; Graetz, J.; Zhou, W. M.; Johnson, J.; Wegrzyn, J. Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles. Appl. Phys. A 2005, 80, 687–690.
Ma, Z. L.; Liu, J. C.; Zhu, Y. F.; Zhao, Y. Y.; Lin, H. J.; Zhang, Y.; Li, H. W.; Zhang, J. G.; Liu, Y. N.; Gao, W. T. et al. Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2. J. Alloys Compd. 2020, 822, 153553.
Duan, X. Q.; Li, G. X.; Zhang, W. H.; Luo, H.; Tang, H. M.; Xu, L.; Sheng, P.; Wang, X. H.; Huang, X. T.; Huang, C. K. et al. Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: From performance to mechanism. Rare Met. 2023, 42, 1923–1934.
Lin, H. J.; Lu, Y. S.; Zhang, L. T.; Liu, H. Z.; Edalati, K.; Révész, Á. Recent advances in metastable alloys for hydrogen storage: A review. Rare Met. 2022, 41, 1797–1817.
Ali, N. A.; Sazelee, N. A.; Md Din, M. F.; Nasef, M. M.; Jalil, A. A.; Liu, H. Z.; Ismail, M. Ameliorating the re/dehydrogenation behaviour of MgH2 by zinc titanate addition. J. Magnesium Alloys 2023, 11, 2205–2215.
Sazelee, N. A.; Ali, N. A.; Yahya, M. S.; Din, M. F. M.; Ismail, M. Enhancing hydrogen storage performance of MgH2 through the addition of BaMnO3 synthesized via solid-state method. Int. J. Hydrogen Energy 2023, 48, 30844–30857.
Jiang, M. M.; Xu, J.; Munroe, P.; Xie, Z. H. First-principles study on the hydrogen storage properties of MgH2(101) surface by CuNi co-doping. Chem. Phys. 2023, 565, 111760.
Liu, H. Z.; Wang, X. H.; Dong, Z. H.; Cao, G. Z.; Liu, Y. A.; Chen, L. X.; Yan, M. Dehydriding properties of γ-AlH3. Int. J. Hydrogen Energy 2013, 38, 10851–10856.
Huang, L. J.; Wang, H.; Ouyang, L. Z.; Zhu, M.; Lin, H. J. Decorating crystalline YFe2− x Al x on the Mg60La10Ni20Cu10 amorphous alloy as “hydrogen pump” to realize fast de/hydrogenation. J. Mater. Sci. Technol. 2024, 173, 72–79.
Muto, S.; Tatsumi, K.; Ikeda, K.; Orimo, S. Dehydriding process of α-AlH3 observed by transmission electron microscopy and electron energy-loss spectroscopy. J. Appl. Phys. 2009, 105, 123514.
Hirscher, M.; Yartys, V. A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R. C. Jr.; Broom, D. P.; Buckley, C. E.; Chang, F.; Chen, P. et al. Materials for hydrogen-based energy storage-past, recent progress and future outlook. J. Alloys Compd. 2020, 827, 153548.
Jiang, W.; Wang, H.; Zhu, M. AlH3 as a hydrogen storage material: Recent advances, prospects and challenges. Rare Met. 2021, 40, 3337–3356.
Su, W. D.; Zhao, F. F.; Ma, L.; Tang, R. X.; Dong, Y. R.; Kong, G. L.; Zhang, Y.; Niu, S. L.; Tang, G.; Wang, Y. et al. Synthesis and stability of hydrogen storage material aluminum hydride. Materials (Basel) 2021, 14, 2898.
Liu, H. Z.; Zhang, L. F.; Ma, H. Y.; Lu, C. L.; Luo, H.; Wang, X. H.; Huang, X. T.; Lan, Z. Q.; Guo, J. Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. J. Energy Chem. 2021, 52, 428–440.
Peng, H.; Guan, J.; Yan, Q. L.; Fu, X. L.; Huang, T.; Peng, R. F.; Jin, B. Kinetics and mechanism of hydrogen release from isothermal decomposition of AlH3. J. Alloys Compd. 2023, 960, 170677.
Zhao, Y.; Wang, Q. S.; Yin, D. M.; Li, S. L.; Wang, C. L.; Liang, L.; Zhao, S. L.; Zhang, C. M.; Wang, L. M.; Cheng, Y. Superior catalytic effect of Bi@C on dehydrogenation performance of α-AlH3. Int. J. Hydrogen Energy 2024, 50, 1164–1173.
Guan, J.; Peng, H.; Jin, B.; Peng, R. F. Isothermal decomposition of AlH3/hydrogen absorbents. Thermochim. Acta 2023, 724, 179502.
Yao, P. F.; Zhao, H. M.; Zhang, M. Y.; Xia, C. Q.; Yang, T.; Li, Q. Synthesis of α-AlH3 by organic liquid reduction method and its hydrogen desorption performance. Int. J. Hydrogen Energy 2023, 48, 34132–34140.
Dragojlović, M.; Radaković, J.; Batalović, K. DFT study of crystal structure and electronic properties of metal-doped AlH3 polymorphs. Int. J. Hydrogen Energy 2022, 47, 6142–6153.
Yu, M. H.; Xie, W. X.; Zhu, Z. Y.; Yan, Q. L. Stability, reactivity and decomposition kinetics of surface passivated α-AlH3 crystals. Int. J. Hydrogen Energy 2022, 47, 8916–8928.
Yu, H. Z.; Dai, J. H.; Song, Y. Catalytic effect of Ti and Ni on dehydrogenation of AlH3: A first principles investigation. Appl. Surf. Sci. 2015, 347, 139–146.
Nakagawa, Y.; Lee, C. H.; Matsui, K.; Kousaka, K.; Isobe, S.; Hashimoto, N.; Yamaguchi, S.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Doping effect of Nb species on hydrogen desorption properties of AlH3. J. Alloys Compd. 2018, 734, 55–59.
Lin, Z. X.; Yuan, Z. L.; Zhang, H. H.; Guan, S. Y.; Wang, X. J.; Zhao, S. Q.; Fan, G. X.; Fan, Y. P.; Liu, B. Z. Excellent catalytic effect of V2C MXene on dehydrogenation performance of α-AlH3. Int. J. Hydrogen Energy 2024, 56, 998–1006.
Zhao, S. L.; Liang, L.; Liu, B. Z.; Wang, L. M.; Liang, F. Superior dehydrogenation performance of α-AlH3 catalyzed by Li3N: Realizing 8.0 wt.% capacity at 100 °C. Small 2022, 18, 2107983.
Zhang, C. M.; Liang, L.; Zhao, S. L.; Wu, Z. J.; Wang, S. H.; Yin, D. M.; Wang, Q. S.; Wang, L. M.; Wang, C. L.; Cheng, Y. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Res. 2023, 16, 9426–9434.
Liu, X. S.; Liu, H. Z.; Qiu, N.; Zhang, Y. B.; Zhao, G. Y.; Xu, L.; Lan, Z. Q.; Guo, J. Cycling hydrogen desorption properties and microstructures of MgH2-AlH3-NbF5 hydrogen storage materials. Rare Met. 2021, 40, 1003–1007.
Duan, C. W.; Cao, Y. Z.; Hu, L. X.; Fu, D.; Ma, J. L. Synergistic effect of TiF3 on the dehydriding property of α-AlH3 nano-composite. Mater. Lett. 2019, 238, 254–257.
Liang, L.; Wang, C. L.; Ren, M. G.; Li, S. L.; Wu, Z. J.; Wang, L. M.; Liang, F. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Appl. Mater. Interfaces 2021, 13, 26998–27005.
He, S. X.; Li, G. X.; Wang, Y.; Liu, L.; Lu, Z. Q.; Xu, L.; Sheng, P.; Wang, X. H.; Chen, H. Q.; Huang, C. K. et al. Achieving both high hydrogen capacity and low decomposition temperature of the metastable AlH3 by proper ball milling with TiB2. Int. J. Hydrogen Energy 2023, 48, 3541–3551.
Zhu, Z. W.; Zheng, Q. R. Investigation of cryo-adsorption hydrogen storage capacity of rapidly synthesized MOF-5 by mechanochemical method. Int. J. Hydrogen Energy 2023, 48, 5166–5174.
Cao, K. R.; He, F. Y.; Yan, J.; Zhu, W. W.; Wang, Y. N.; Zhang, Y. H.; Zhang, B.; Yu, X. H.; Shen, Q. F.; Liu, C. X. et al. MOF-derived Bi@C nanocomposites electrode simultaneous detection of hydroquinone and catechol. Inorg. Chem. Commun. 2023, 148, 110327.
Heo, C. Y.; Díaz-Ramírez, M. L.; Park, S. H.; Kang, M.; Hong, C. S.; Jeong, N. C. Solvent-driven dynamics: Crafting tailored transformations of Cu(II)-based MOFs. ACS Appl. Mater. Interfaces 2024, 16, 9068–9077.
Zhang, Z. W.; Chen, Y. L.; Tian, Y. H.; Li, H. L.; Lu, Z. X.; Yang, L. Fabry-pérot cavity based on metal–organic framework/graphene oxide heterostructure membranes for humidity sensing. ACS Appl. Nano Mater. 2024, 7, 6148–6158.
Oh, H.; Lee, G.; Oh, M. A drop-and-drain method for convenient and efficient fabrication of MOF/fiber composites. Small 2024, 20, 2306543.
Meng, X. H.; Wan, C. B.; Wang, Y. T.; Ju, X. Porous Ni@C derived from bimetallic metal–organic frameworks and its application for improving LiBH4 dehydrogenation. J. Alloys Compd. 2018, 735, 1637–1647.
Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.
Liang, L.; Zhao, S. L.; Wang, C. L.; Yin, D. M.; Wang, S. H.; Wang, Q. S.; Liang, F.; Li, S. L.; Wang, L. M.; Cheng, Y. Heterojunction synergistic catalysis of MXene-supported PrF3 nanosheets for the efficient hydrogen storage of AlH3. Nano Res. 2023, 16, 9546–9552.
Yang, J. X.; Liang, F.; Cheng, Y.; Yin, D. M.; Wang, L. M. Improvement of dehydrogenation performance by adding CeO2 to α-AlH3. Int. J. Hydrogen Energy 2020, 45, 2119–2126.
Liang, L.; Yang, Q. Q.; Zhao, S. L.; Wang, L. M.; Liang, F. Excellent catalytic effect of LaNi5 on hydrogen storage properties for aluminium hydride at mild temperature. Int. J. Hydrogen Energy 2021, 46, 38733–38740.
Liu, H. Z.; He, S. X.; Li, G. X.; Wang, Y.; Xu, L.; Sheng, P.; Wang, X. H.; Jiang, T.; Huang, C. K.; Lan, Z. Q. et al. Directed stabilization by air-milling and catalyzed decomposition by layered titanium carbide toward low-temperature and high-capacity hydrogen storage of aluminum hydride. ACS Appl. Mater. Interfaces 2022, 14, 42102–42112.