AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dimensional regulation in gigantic molybdenum blue wheels featuring {(W)Mo5} motifs for enhanced proton conductivity

Yu-Lun Wu1,§Jing Du2,§Hai-Ying Zhang1Ming-Jun Hou1Qiao-Yue Li1Wei-Chao Chen1( )Kui-Zhan Shao1Bo Zhu1( )Chao Qin1Xin-Long Wang1( )Zhong-Min Su1,3
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China

§ Yu-Lun Wu and Jing Du contributed equally to this work.

Show Author Information

Graphical Abstract

Dimensional regulation has been realized in an unprecedented gigantic molybdenum blue wheel family featuring pentagonal {(W)Mo5} motifs through optimizing the molar ratio of Mo/W, including zero-dimensional (0D)-{Mo124W14} (1), one-dimensional (1D)-{Mo126W14}n (2), two-dimensional (2D)-{Mo124W14}n (3). The proton conductivity of 3 is 10 times higher than that of 1 and 1.7 times higher than that of 2.

Abstract

Dimensional regulation in polyoxometalates is an effective strategy during the design and synthesis of polyoxometalates-based high proton conductors, but it is not available to date. Herein, the precise regulation of dimensionality has been realized in an unprecedented gigantic molybdenum blue wheel family featuring pentagonal {(W)Mo5} motifs through optimizing the molar ratio of Mo/W, including [Gd2Mo124W14O422(H2O)62]38− (0D-{Mo124W14}, 1), [Mo126W14O441(H2O)51]70− (1D-{Mo126W14}n, 2), and [Mo124W14O430(H2O)50]60− (2D-{Mo124W14}n, 3). Such important {(W)Mo5} structural motif brings new reactivity into gigantic Mo blue wheels. There are different numbers and sites of {Mo2} defects in each wheel-shaped monomer in 13, which leads to the monomers of 2 and 3 to form 1D and 2D architectures via Mo–O–Mo covalent bonds driven by {Mo2}-mediated H2O ligands substitution process, respectively, thus achieving the controllable dimensional regulation. As expected, the proton conductivity of 3 is 10 times higher than that of 1 and 1.7 times higher than that of 2. The continuous proton hopping sites in 2D network are responsible for the enhanced proton conductivity with lower activation energy. This study highlights that this dimensional regulation approach remains great potential in preparing polyoxometalates-based high proton conductive materials.

Electronic Supplementary Material

Download File(s)
6868_ESM.pdf (5.7 MB)

References

[1]

Xiang, Y.; Lu, S. F.; Jiang, S. P. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem. Soc. Rev. 2012, 41, 7291–7321.

[2]

Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. MOFs as proton conductors-challenges and opportunities. Chem. Soc. Rev. 2014, 43, 5913–5932.

[3]

Pili, S.; Argent, S. P.; Morris, C. G.; Rought, P.; García-Sakai, V.; Silverwood, I. P.; Easun, T. L.; Li, M.; Warren, M. R.; Murray, C. A. et al. Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic "free diffusion inside a sphere". J. Am. Chem. Soc. 2016, 138, 6352–6355.

[4]

Kim, Y.; Ketpang, K.; Jaritphun, S.; Park, J. S.; Shanmugam, S. A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity. J. Mater. Chem. A 2015, 3, 8148–8155.

[5]

Meng, X.; Wang, H. N.; Song, S. Y.; Zhang, H. J. Proton-conducting crystalline porous materials. Chem. Soc. Rev. 2017, 46, 464–480.

[6]

Wei, X. Z.; Gu, C. Design of stable covalent organic frameworks for transport regulation of mass and energy. Sci. China Chem. 2023, 66, 3495–3505.

[7]

Wang, X. L.; Liang, L. F.; Dou, S.; Zhang, X. M. Two-in-one tecton strategy to construct single crystalline hydrogen-bonded organic framework with high proton conductivity above 100 °C. Sci. China Chem. 2023, 66, 2563–2568.

[8]

Xie, W. L.; Li, X. M.; Lin, J. M.; Dong, L. Z.; Chen, Y.; Li, N.; Shi, J. W.; Liu, J. J.; Liu, J.; Li, S. L. et al. Keeping superprotonic conductivity over a wide temperature region via sulfate hopping sites-decorated zirconium-oxo clusters. Small 2022, 18, 2205444.

[9]

Hao, J.; Ruhlmann, L.; Zhu, Y. L.; Li, Q.; Wei, Y. G. Naphthylimido-substituted hexamolybdate: Preparation, crystal structures, solvent effects, and optical properties of three polymorphs. Inorg. Chem. 2007, 46, 4960–4967.

[10]

Li, X. X.; Ji, T.; Gao, J. Y.; Chen, W. C.; Yuan, Y.; Sha, H. Y.; Faller, R.; Shan, G. G.; Shao, K. Z.; Wang, X. L. et al. An unprecedented fully reduced {MoV60} polyoxometalate: From an all-inorganic molecular light-absorber model to improved photoelectronic performance. Chem. Sci. 2022, 13, 4573–4580.

[11]

Wang, Z. M.; Xin, X.; Li, Z.; Zhang, M.; Zhang, J. W.; Feng, Y. Q.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Atomically-precise Janus polyoxometalate catalyst with tunable water splitting activity. Sci. China Chem. 2023, 66, 1771–1780.

[12]

Ji, T.; Chen, W. L.; Kang, Z. H.; Zhang, L. M. Polyoxometalates for continuous power generation by atmospheric humidity. Nano Res. 2024, 17, 1875–1885.

[13]

Bai, X.; Han, X.; Wang, Y. X.; Zhang, A. G.; Yang, Y. L.; Lu, Y.; Liu, S. X. Two 3D two-fold interpenetrated dia-like polyoxometalate-based metal-organic frameworks: Synthesis and sulfide selective oxidation activity. Inorg. Chem. 2023, 62, 13221–13229.

[14]

Zhao, Y. N.; Li, W. L.; Li, Y. Q.; Qiu, T. Y.; Mu, X.; Ma, Y. Z.; Zhao, Y.; Zhang, J. P.; Zhang, J. W.; Li, Y. G. et al. 3D covalent polyoxovanadate-organic framework as an anode for high-performance lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2306598.

[15]

Li, B.; Duan, X. Z.; Cheng, D. M.; Chen, X. Y.; Gao, Z. X.; Ren, W. B.; Shao, K. Z.; Zang, H. Y. Controllable transition metal-directed assembly of [Mo2O2S2]2+ building blocks into smart molecular humidity-responsive actuators. J. Am. Chem. Soc. 2023, 145, 2243–2251.

[16]

Li, H. L.; Yang, G. Y. New {Co9} cluster-added banana-shaped polyoxometalate modified by B atom. Polyoxometalates 2023, 2, 9140034.

[17]

Li, S.; Zheng, Y.; Liu, G. C.; Li, X. H.; Zhang, Z.; Wang, X. L. New two fold interpenetrating 3D polyoxovanadate-based metal-organic framework as bifunctional catalyst for the removal of 2-chloroethyl ethyl sulfide and phenolic compounds. Polyoxometalates 2024, 3, 9140061.

[18]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[19]

Jiang, C. C.; Wei, Y. G.; Liu, Q.; Zhang, S. W.; Shao, M. C.; Tang, Y. Q. Self-assembly of a novel nanoscale giant cluster: [Mo176O496(OH)32(H2O)80]. Chem. Commun. 1998, 1937–1938.

[20]

Ni, L. B.; Gu, J.; Jiang, X. Y.; Xu, H. J.; Wu, Z.; Wu, Y. C.; Liu, Y.; Xie, J.; Wei, Y. G.; Diao, G. W. Polyoxometalate-cyclodextrin-based cluster-organic supramolecular framework for polysulfide conversion and guest-host recognition in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2023, 62, e202306528.

[21]

Qian, D. Q.; Lin, Y. D.; Xiao, H. P.; Wu, B.; Li, X. X.; Zheng, S. T. Advances in coinage-metal-substituted polyoxometalates: A review. Polyoxometalates 2024, 3, 9140040.

[22]

She, S.; Bian, S. T.; Huo, R. C.; Chen, K.; Huang, Z. H.; Zhang, J. W.; Hao, J.; Wei, Y. G. Degradable organically-derivatized polyoxometalate with enhanced activity against glioblastoma cell line. Sci. Rep. 2016, 6, 33529.

[23]

Wang, J. L.; Cao, J. P.; Zhu, Y. H.; Wang, Q.; Li, N. F.; Fan, X. R.; Mei, H.; Xu, Y. Four unprecedented V14 clusters as highly efficient heterogeneous catalyst for CO2 fixation with epoxides and oxidation of sulfides. Sci. China Chem. 2023, 66, 107–116.

[24]

Wang, Z. M.; Xin, X.; Zhang, M.; Li, Z.; Lv, H. J.; Yang, G. Y. Recent advances of mixed-transition-metal-substituted polyoxometalates. Sci. China Chem. 2022, 65, 1515–1525.

[25]

Han, Y.; Wu, Z. K.; Wei, Z. Y.; Zhai, Y. Y.; Ru, S.; Zhao, Q. X.; Wang, J. J.; Han, S.; Wei, Y. G. N-formylation of amines using methanol as a potential formyl carrier by a reusable chromium catalyst. Commun. Chem. 2019, 2, 15.

[26]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

[27]

Zhang, M. Q.; Zhai, Y. Y.; Ru, S.; Zang, D. J.; Han, S.; Yu, H.; Wei, Y. G. Highly practical and efficient preparation of aldehydes and ketones from aerobic oxidation of alcohols with an inorganic-ligand supported iodine catalyst. Chem. Commun. 2018, 54, 10164–10167.

[28]

Zhang, S. W.; Wei, Y. G.; Yu, Q.; Shao, M. C.; Tang, Y. Q. Toward Quantum Line-self-assembly process of nanomolecular building blocks leading to a novel one-dimensional nanomolecular polymer: Single-crystal X-ray structure of {[H3O]+12{(H2O)MoO2.5[Mo36O108(NO)4(H2O)16]-O2.5Mo(H2O)}12−} n . J. Am. Chem. Soc. 1997, 119, 6440–6441.

[29]

Wang, Z. D.; Liang, S.; Yang, Y. Q.; Liu, Z. N.; Duan, X. Z.; Li, X. P.; Liu, T. B.; Zang, H. Y. Complex phase transitions and phase engineering in the aqueous solution of an isopolyoxometalate cluster. Nat. Commun. 2023, 14, 2767.

[30]

Ogiwara, N.; Iwano, T.; Ito, T.; Uchida, S. Proton conduction in ionic crystals based on polyoxometalates. Coord. Chem. Rev. 2022, 462, 214524.

[31]

Liu, Y. W.; Liu, S. M.; Lai, X. Y.; Miao, J.; He, D. F.; Li, N.; Luo, F.; Shi, Z.; Liu, S. X. Polyoxometalate-modified sponge-like graphene oxide monolith with high proton-conducting performance. Adv. Funct. Mater. 2015, 25, 4480–4485.

[32]

Müller, A.; Gouzerh, P. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chem. Soc. Rev. 2012, 41, 7431–7463.

[33]

Shishido, S.; Ozeki, T. The pH dependent nuclearity variation of {Mo154− x }-type polyoxomolybdates and tectonic effect on their aggregations. J. Am. Chem. Soc. 2008, 130, 10588–10595.

[34]

Yamase, T.; Prokop, P. V. Photochemical formation of tire-shaped molybdenum blues: Topology of a defect anion, [Mo142O432H28(H2O)58]12-. 3.0.CO;2-W">Angew. Chem., Int. Ed. 2002, 41, 466–469.

[35]

Leclerc-Laronze, N.; Marrot, J.; Thouvenot, R.; Cadot, E. Structural link between giant molybdenum oxide based ions and derived Keggin structure: Modular assemblies based on the [BW11O39]9- ion and pentagonal {M'M5} units (M' = W; M = Mo, W). Angew. Chem., Int. Ed. 2009, 48, 4986–4989.

[36]

Zhu, M. H.; Han, S. C.; Liu, J. R.; Tan, M. J.; Wang, W.; Suzuki, K.; Yin, P. C.; Xia, D. B.; Fang, X. K. {Mo126W30}: Polyoxometalate cages shaped by π–π interactions. Angew. Chem., Int. Ed. 2022, 61, e202213910.

[37]

Forster, J.; Rösner, B.; Fink, R. H.; Nye, L. C.; Ivanovic-Burmazovic, I.; Kastner, K.; Tucher, J.; Streb, C. Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chem. Sci. 2013, 4, 418–424.

[38]

Yin, P. C.; Wu, B.; Li, T.; Bonnesen, P. V.; Hong, K. L.; Seifert, S.; Porcar, L.; Do, C.; Keum, J. K. Reduction-triggered self-assembly of nanoscale molybdenum oxide molecular clusters. J. Am. Chem. Soc. 2016, 138, 10623–10629.

[39]

Kosar, N.; Ayub, K.; Gilani, M. A.; Muhammad, S.; Mahmood, T. Benchmark density functional theory approach for the calculation of bond dissociation energies of the M–O2 bond: A key step in water splitting reactions. ACS Omega 2022, 7, 20800–20808.

[40]

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

[41]

Chiodo, S.; Russo, N.; Sicilia, E. LANL2DZ basis sets recontracted in the framework of density functional theory. J. Chem. Phys. 2006, 125, 104107.

[42]

Müller, A.; Krickemeyer, E.; Meyer, J.; Bögge, H.; Peters, F.; Plass, W.; Diemann, E.; Dillinger, S.; Nonnenbruch, F.; Randerath, M. et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)−: A water-Soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000. Angew. Chem., Int. Ed. 1995, 34, 2122–2124.

[43]

Gao, J.; Yan, J.; Beeg, S.; Long, D. L.; Cronin, L. One-pot versus sequential reactions in the self-assembly of gigantic nanoscale polyoxotungstates. J. Am. Chem. Soc. 2013, 135, 1796–1805.

[44]

Schäffer, C.; Merca, A.; Bögge, H.; Todea, A. M.; Kistler, M. L.; Liu, T. B.; Thouvenot, R.; Gouzerh, P.; Müller, A. Unprecedented and differently applicable pentagonal units in a dynamic library: a keplerate of the type {(W)W5}12{Mo2}30. Angew. Chem., Int. Ed. 2008, 48, 149–153.

[45]

Tsunashima, R.; Long, D. L.; Miras, H. N.; Gabb, D.; Pradeep, C. P.; Cronin, L. The construction of high-nuclearity isopolyoxoniobates with pentagonal building blocks: [HNb27O76]16− and [H10Nb31O93(CO3)]23−. Angew. Chem., Int. Ed. 2010, 49, 113–116.

[46]

Gong, Y. R.; Tao, Y. L.; Xu, N.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Two polyoxovanadate-based metal-organic polyhedra with undiscovered "near-miss Johnson solid" geometry. Chem. Commun. 2019, 55, 10701–10704.

[47]

Zhang, Y. T.; Gan, H. M.; Qin, C.; Wang, X. L.; Su, Z. M.; Zaworotko, M. J. Self-assembly of goldberg polyhedra from a concave [WV5O11(RCO2)5(SO4)]3− building block with 5-fold symmetry. J. Am. Chem. Soc. 2018, 140, 17365–17368.

[48]

Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F.; Menke, C.; Meyer, J. An unusual polyoxomolybdate: Giant wheels linked to chains. Angew. Chem., Int. Ed. 1997, 36, 484–486.

[49]

Yang, W. B.; Lu, C. Z.; Lin, X.; Wang, S.; Zhuang, H. H. A new defective derivative of a ring-shaped nanosize polyoxomolybdate: Synthesis and structure of Na28[MoVI112MoV28O427H14(H2O)56]·ca. 300 H2O. Inorg. Chem. Commun. 2001, 4, 245–247.

[50]

Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Beugholt, C.; Das, S. K.; Peters, F. Giant ring-shaped building blocks linked to form a layered cluster network with nanosized channels: [Mo124VIMo28VO4293-O)28H14(H2O)66.5]16−. 3.0.CO;2-D">Chem.—Eur. J. 1999, 5, 1496–1502.

[51]

Müller, A.; Das, S. K.; Fedin, V. P.; Krickemeyer, E.; Beugholt, C.; Bögge, H.; Schmidtmann, M.; Hauptfleisch, B. Rapid and simple isolation of the crystalline molybdenum-blue compounds with discrete and linked nanosized ring-shaped anions: Na15[Mo{126}{VI}Mo{28}VO462H14(H2O)70]0.5[Mo{124}{VI}Mo{28}VO457H14(H2O)68]0.5 ·ca. 400 H2O and Na22[Mo{118}{VI}Mo{28}VO442H14(H2O)58] · ca. 250 H2O. 3.0.CO;2-#">Z. Anorg. Allg. Chem. 1999, 625, 1187–1192.

[52]

Xuan, W. M.; Pow, R.; Long, D. L.; Cronin, L. Exploring the molecular growth of two gigantic half-closed polyoxometalate clusters {Mo180} and {Mo130Ce6}. Angew. Chem., Int. Ed. 2017, 56, 9727–9731.

[53]

Ribó, E. G.; Bell, N. L.; Xuan, W. M.; Luo, J. C.; Long, D. L.; Liu, T. B.; Cronin, L. Synthesis, assembly, and sizing of neutral, lanthanide substituted molybdenum blue wheels {Mo90Ln10}. J. Am. Chem. Soc. 2020, 142, 17508–17514.

[54]

Xuan, W. M.; Pow, R.; Watfa, N.; Zheng, Q.; Surman, A. J.; Long, D. L.; Cronin, L. Stereoselective assembly of gigantic chiral molybdenum blue wheels using lanthanide ions and amino acids. J. Am. Chem. Soc. 2019, 141, 1242–1250.

[55]

Xuan, W. M.; Surman, A. J.; Miras, H. N.; Long, D. L.; Cronin, L. Controlling the ring curvature, solution assembly, and reactivity of gigantic molybdenum blue wheels. J. Am. Chem. Soc. 2014, 136, 14114–14120.

[56]

Cronin, L.; Beugholt, C.; Krickemeyer, E.; Schmidtmann, M.; Bögge, H.; Kögerler, P.; Luong, T. K. K.; Müller, A. "Molecular symmetry breakers" generating metal-oxide-based nanoobject fragments as synthons for complex structures: [{Mo128Eu4O388H10(H2O)81}2]20−, a giant-cluster dimer. 3.0.CO;2-L">Angew. Chem. 2002, 114, 2929–2932.

[57]

Al-Sayed, E.; Rompel, A. Lanthanides singing the blues: Their fascinating role in the assembly of gigantic molybdenum blue wheels. ACS Nanosci. Au 2022, 2, 179–197.

[58]

Wang, H. Y.; Li, S. R.; Wang, X.; Long, L. S.; Kong, X. J.; Zheng, L. S. Enhanced proton conductivity of Mo154-based porous inorganic framework. Sci. China Chem. 2021, 64, 959–963.

[59]

Lin, J. M.; Li, N.; Yang, S. P.; Jia, M. J.; Liu, J.; Li, X. M.; An, L.; Tian, Q. W.; Dong, L. Z.; Lan, Y. Q. Self-assembly of giant Mo240 hollow opening dodecahedra. J. Am. Chem. Soc. 2020, 142, 13982–13988.

[60]

Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 8416–8420.

[61]

Wang, H. N.; Meng, X.; Dong, L. Z.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Coordination polymer-based conductive materials: Ionic conductivity vs. electronic conductivity. J. Mater. Chem. A 2019, 7, 24059–24091.

[62]

Zhu, M. H.; Iwano, T.; Tan, M. J.; Akutsu, D.; Uchida, S.; Chen, G. Y.; Fang, X. K. Macrocyclic polyoxometalates: Selective polyanion binding and ultrahigh proton conduction. Angew. Chem., Int. Ed. 2022, 61, e202200666.

[63]

Li, Z.; Lin, L. D.; Yu, H.; Li, X. X.; Zheng, S. T. All-inorganic ionic porous material based on giant spherical polyoxometalates containing core-shell K6@K36-water cage. Angew. Chem., Int. Ed. 2018, 57, 15777–15781.

[64]

Li, S. J.; Zhao, Y.; Knoll, S.; Liu, R. J.; Li, G.; Peng, Q. B.; Qiu, P. T.; He, D. F.; Streb, C.; Chen, X. N. High proton-conductivity in covalently linked polyoxometalate-organoboronic acid-polymers. Angew. Chem., Int. Ed. 2021, 60, 16953–16957.

[65]

Li, B.; Meng, Y. X.; Liu, Q. Q.; Chen, X. Y.; Liu, X.; Zang, H. Y. The assembly of [Mo2O2S2]2+ based on polydentate phosphonate templates and their proton conductivity. Chem. Commun. 2023, 59, 13446–13449.

[66]

Ren, W. B.; Sun, S.; Gao, Z. X.; Li, B.; Chen, X. Y.; Liu, Q. Q.; Zang, H. Y. Synthesis of phosphovanadate-based porous inorganic frameworks with high proton conductivity. Inorg. Chem. 2023, 62, 20506–20512.

[67]

Liu, S. Y.; Li, X. X.; Chen, W. C.; Shao, K. Z.; Wang, X. L.; Qin, C.; Su, Z. M. A highly reduced Mo74 polyoxometalate featuring high proton conductivity accessed by building block strategy. Sci. China Chem. 2024, 67, 862–868.

[68]

Kim, S. R.; Joarder, B.; Hurd, J. A.; Zhang, J. F.; Dawson, K. W.; Gelfand, B. S.; Wong, N. E.; Shimizu, G. K. H. Achieving superprotonic conduction in metal-organic frameworks through iterative design advances. J. Am. Chem. Soc. 2018, 140, 1077–1082.

Nano Research
Pages 8261-8268
Cite this article:
Wu Y-L, Du J, Zhang H-Y, et al. Dimensional regulation in gigantic molybdenum blue wheels featuring {(W)Mo5} motifs for enhanced proton conductivity. Nano Research, 2024, 17(9): 8261-8268. https://doi.org/10.1007/s12274-024-6868-y
Topics:

272

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 June 2024
Revised: 25 June 2024
Accepted: 05 July 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return