AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review

Interface engineering via molecules/ions/groups for electrocatalytic water splitting

Defang Ding1Youwen Liu2( )Fan Xia1
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan, Hubei 430074, China
Show Author Information

Graphical Abstract

Interface engineering via molecules/ions/groups for electrocatalytic water splitting is demonstrated from three primary facets, including electronic state engineering, local microenvironment adjustments, and durability enhancement by molecules/ions/groups.

Abstract

The electrochemical water splitting to produce hydrogen converts electric energy into clean hydrogen energy, which is a groundbreaking concept of energy optimization. To achieve high efficiency, numerous strategies have been developed to enhance the performance of electrocatalysts. Among these, interface engineering with molecules/ions/groups, serves as a versatile approach for optimizing the performance of electrocatalysts in water splitting. On the basis of numerous achievements in high-performance electrocatalysts engineered through molecules/ions/groups at interface, a comprehensive understanding of these advancements is crucial for guiding future progress. Herein, after providing a concise overview of the background, the interface engineering via molecules/ions/groups for electrocatalytic water splitting is demonstrated from three perspectives. Firstly, the engineering of electronic state of electrocatalysts by molecules/ions/groups at interface to reduce the Gibbs free energy of the corresponding reactions. Secondly, the modification of local microenvironment surrounding electrocatalysts via molecules/ions/groups at interface to enhance the transfer of reactants and products. Thirdly, the protection of electrocatalysts with molecule/ion/group fences improves their durability, including protecting active sites from leaching and defending them against harmful species. The fundamental principles of these three aspects are outlined for each, along with pertinent comments. Finally, several research directions and challenges are proposed.

References

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413.

[3]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

[4]

Van Der Hoeven, J. E. S.; Jelic, J.; Olthof, L. A.; Totarella, G.; Van Dijk-Moes, R. J. A.; Krafft, J. M.; Louis, C.; Studt, F.; Van Blaaderen, A.; De Jongh, P. E. Unlocking synergy in bimetallic catalysts by core–shell design. Nat. Mater. 2021, 20, 1216–1220.

[5]

Liu, Q.; Ranocchiari, M.; Van Bokhoven, J. A. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem. Soc. Rev. 2022, 51, 188–236.

[6]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[7]

Oener, S. Z.; Foster, M. J.; Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 2020, 369, 1099–1103.

[8]

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

[9]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

[10]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[11]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[12]

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

[13]

Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.

[14]

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

[15]

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

[16]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[17]

Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 2020, 30, 1909260.

[18]

Cai, J.; Javed, R.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22467–22487.

[19]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[20]

Li, L. M.; Cheng, Z. F.; Su, J. Q.; Song, B. B.; Yu, H.; Ji, Y. J.; Shao, Q.; Lu, J. M. One-dimensional amorphous porous iridium-ruthenium oxide for efficient acidic oxygen evolution reaction. J. Mater. Chem. A 2023, 11, 25268–25274.

[21]

Hao, Y. X.; Hung, S. F.; Zeng, W. J.; Wang, Y.; Zhang, C. C.; Kuo, C. H.; Wang, L. Q.; Zhao, S.; Zhang, Y.; Chen, H. Y. et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 2023, 145, 23659–23669.

[22]

Zheng, Y. R.; Vernieres, J.; Wang, Z. B.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T. W.; Presel, F.; Altantzis, T.; Fatermans, J. et al. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts. Nat. Energy 2021, 7, 55–64.

[23]

Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818.

[24]

Chia, X. Y.; Pumera, M. Layered transition metal dichalcogenide electrochemistry: Journey across the periodic table. Chem. Soc. Rev. 2018, 47, 5602–5613.

[25]

Ma, L. Z.; Zhang, K.; Wang, S.; Gao, L. N.; Sun, Y. F.; Liu, Q. Y.; Guo, J. X.; Zhang, X. Vanadium doping over Ni3S2 nanosheet array for improved overall water splitting. Appl. Surf. Sci. 2019, 489, 815–823.

[26]

Li, H. Y.; Jia, X. F.; Zhang, Q.; Wang, X. Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510–1537.

[27]

Zhang, K.; Jia, J.; Yang, E. D.; Qi, S. P.; Tian, H. Z.; Chen, J. X.; Li, J.; Lou, Y. B.; Guo, Y. Z. Work-function-induced electron rearrangement of in-plane FeP@CoP heterojunction enhances all pH range and alkaline seawater hydrogen evolution reaction. Nano Energy 2023, 114, 108601.

[28]

Zai, S. F.; Zhou, Y. T.; Yang, C. C.; Jiang, Q. Al, Fe-codoped CoP nanoparticles anchored on reduced graphene oxide as bifunctional catalysts to enhance overall water splitting. Chem. Eng. J. 2021, 421, 127856.

[29]

Hao, J.; Wu, K. L.; Lyu, C.; Yang, Y. Q.; Wu, H. J.; Liu, J. J.; Liu, N. Y.; Lau, W. M.; Zheng, J. L. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Mater. Horiz. 2023, 10, 2312–2342.

[30]

Liu, Y. X.; Bai, Y.; Han, Y.; Yu, Z.; Zhang, S. M.; Wang, G. H.; Wei, J. H.; Wu, Q. B.; Sun, K. N. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 36917–36926.

[31]

Pelicano, C. M.; Saruyama, M.; Takahata, R.; Sato, R.; Kitahama, Y.; Matsuzaki, H.; Yamada, T.; Hisatomi, T.; Domen, K.; Teranishi, T. Bimetallic synergy in ultrafine cocatalyst alloy nanoparticles for efficient photocatalytic water splitting. Adv. Funct. Mater. 2022, 32, 2202987.

[32]

Kwon, T.; Yu, A.; Kim, S. J.; Kim, M. H.; Lee, C.; Lee, Y. Au–Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acidic water splitting. Appl. Surf. Sci. 2021, 563, 150293.

[33]

Yang, Y.; Lin, Z. Y.; Gao, S. Q.; Su, J. W.; Lun, Z. Y.; Xia, G. L.; Chen, J. T.; Zhang, R. R.; Chen, Q. W. Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal. 2017, 7, 469–479.

[34]

Huang, G.; Li, Y. Y.; Chen, R.; Xiao, Z. H.; Du, S. Q.; Huang, Y. C.; Xie, C.; Dong, C.; Yi, H. B.; Wang, S. Y. Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting. Chin. J. Catal. 2022, 43, 1101–1110.

[35]

Yang, W. S.; Wang, S. S.; Zhao, K.; Hua, Y. T.; Qiao, J. X.; Luo, W.; Li, L. H.; Hao, J. H.; Shi, W. D. Phosphorus doped nickel selenide for full device water splitting. J. Colloid Interface Sci. 2021, 602, 115–122.

[36]

Das, A.; Roy, D.; Das, B. K.; Ansari, M. I.; Chattopadhyay, K. K.; Sarkar, S. Zinc doping induced WS2 accelerating the HER and ORR kinetics: A theoretical and experimental validation. Catal. Today 2023, 423, 113921.

[37]

Bolar, S.; Shit, S.; Murmu, N. C.; Samanta, P.; Kuila, T. Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design. ACS Appl. Mater. Interfaces 2021, 13, 765–780.

[38]

Jiang, W. Y.; Wu, X. X.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Chen, Z. X.; Liang, C.; Liu, X. F.; Zhang, Y. Integrated hetero-nanoelectrodes for Plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Res. 2021, 14, 1195–1201.

[39]

Wang, Y.; Liu, J. C.; Liao, Y. F.; Wu, C. L.; Chen, Y. G. Hetero-structured V-Ni3S2@NiOOH core–shell nanorods from an electrochemical anodization for water splitting. J. Alloys Compd. 2021, 856, 158219.

[40]

Zhang, Y.; Ma, C. Q.; Zhu, X. J.; Qu, K. Y.; Shi, P. D.; Song, L. Y.; Wang, J.; Lu, Q. P.; Wang, A. L. Hetero-interface manipulation in MoO x @Ru to evoke industrial hydrogen production performance with current density of 4000 mA·cm−2. Adv. Energy Mater. 2023, 13, 2301492.

[41]

Yang, H.; He, Q. Y.; Liu, Y. W.; Li, H. Q.; Zhang, H.; Zhai, T. Y. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 2020, 49, 2916–2936.

[42]

Wu, Y. J.; Yang, J.; Tu, T. X.; Li, W. Q.; Zhang, P. F.; Zhou, Y.; Li, J. F.; Li, J. T.; Sun, S. G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew. Chem., Int. Ed. 2021, 60, 26829–26836.

[43]

Wang, W. B.; Duan, J. Y.; Liu, Y. W.; Zhai, T. Y. Structural reconstruction of catalysts in electroreduction reaction: Identifying, understanding, and manipulating. Adv. Mater. 2022, 34, 2110699.

[44]

An, Y. R.; Fan, X. L.; Luo, Z. F.; Lau, W. M. Nanopolygons of monolayer MS2: Best morphology and size for HER catalysis. Nano Lett. 2017, 17, 368–376.

[45]

Zhao, Y.; Huang, J. Z.; Chen, J. Q.; Liu, Y. W.; Zhai, T. Y. Chemical-vapor-deposition-grown 2D transition metal dichalcogenides: A generalist model for engineering electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 101–116.

[46]

Baek, D. S.; Lim, H. Y.; Kim, J.; Lee, J.; Lim, J. S.; Kim, D.; Lee, J. H.; Jang, J. W.; Kwak, S. K.; Joo, S. H. Volcanic-size-dependent activity trends in Ru-catalyzed alkaline hydrogen evolution reaction. ACS Catal. 2023, 13, 13638–13649.

[47]

Shao, X. D.; Kim, M.; Liang, M. F.; Lee, H. Metallic nanoclusters for electrochemical water splitting. ChemCatChem 2024, 16, e202301541.

[48]

Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

[49]

Wang, P. C.; Wang, B. G. Designing self-supported electrocatalysts for electrochemical water splitting: Surface/interface engineering toward enhanced electrocatalytic performance. ACS Appl. Mater. Interfaces 2021, 13, 59593–59617.

[50]

Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.

[51]

Li, Q.; Bao, Y.; Bai, F. Porphyrin and macrocycle derivatives for electrochemical water splitting. MRS Bull. 2020, 45, 569–573.

[52]

Zhao, J. Y.; Zhang, Y.; Guo, H. R.; Zhang, H. T.; Ren, J. K.; Song, R. Rational regulation of crystalline/amorphous microprisms-nanochannels based on molecular sieve (VSB-5) for electrochemical overall water splitting. Small 2022, 18, 2200832.

[53]

Wang, T. Z.; Cao, X. J.; Jiao, L. F. Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem., Int. Ed. 2022, 61, e202213328.

[54]

Yasuda, S.; Tamura, K.; Terasawa, T. O.; Yano, M.; Nakajima, H.; Morimoto, T.; Okazaki, T.; Agari, R.; Takahashi, Y.; Kato, M. et al. Confinement of hydrogen molecules at graphene-metal interface by electrochemical hydrogen evolution reaction. J. Phys. Chem. C 2020, 124, 5300–5307.

[55]

Guo, Y. B.; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635–1644.

[56]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

[57]

Zhou, L. H.; Yang, C. M.; Zhu, W. C.; Li, R.; Pang, X. X.; Zhen, Y. Z.; Wang, C. T.; Gao, L. J.; Fu, F.; Gao, Z. W. et al. Boosting alkaline hydrogen evolution reaction via an unexpected dynamic evolution of molybdenum and selenium on MoSe2 electrode. Adv. Energy Mater. 2022, 12, 2202367.

[58]

Cao, L. M.; Hu, C. G.; Li, H. H.; Huang, H. B.; Ding, L. W.; Zhang, J.; Wu, J. X.; Du, Z. Y.; He, C. T.; Chen, X. M. Molecule-enhanced electrocatalysis of sustainable oxygen evolution using organoselenium functionalized metal-organic nanosheets. J. Am. Chem. Soc. 2023, 145, 1144–1154.

[59]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[60]

Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.

[61]

Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

[62]

Chen, J. Q.; Lu, N.; Zhao, Y.; Huang, J. Z.; Gan, X. J.; Chen, X. Z.; Yang, Z. H.; Wen, Q. L.; Zhai, T. Y.; Liu, Y. W. On-chip microdevice unveils reactant enrichment effect dominated electrocatalysis activity in molecular-linked catalysts. Nano Lett. 2022, 22, 10154–10162.

[63]

Wen, Q. L.; Lin, Y.; Yang, Y.; Gao, R. J.; Ouyang, N. Q.; Ding, D. F.; Liu, Y. W.; Zhai, T. Y. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano 2022, 16, 9572–9582.

[64]

Bae, M.; Kang, Y.; Lee, D. W.; Jeon, D.; Ryu, J. Superaerophobic polyethyleneimine hydrogels for improving electrochemical hydrogen production by promoting bubble detachment. Adv. Energy Mater. 2022, 12, 2201452.

[65]

Das, J.; Mandal, S.; Borbora, A.; Rani, S.; Tenjimbayashi, M.; Manna, U. Modulating force of nucleated hydrogen bubble adhesion to boost electrochemical water splitting. Adv. Funct. Mater. 2024, 34, 2311648.

[66]

Zhang, F.; Zhao, R.; Wang, Y. R.; Han, L.; Gu, J. M.; Niu, Z. M.; Yuan, Y. M.; Qu, N. R.; Meng, J. X.; Wang, D. S. Superwettable surface-dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption. Chem. Eng. J. 2023, 452, 139513.

[67]

Li, M. X.; Xie, P. P.; Yu, L. F.; Luo, L.; Sun, X. M. Bubble engineering on micro-/nanostructured electrodes for water splitting. ACS Nano 2023, 17, 23299–23316.

[68]

Darband, G. B.; Aliofkhazraei, M.; Shanmugam, S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renew. Sustain. Energy Rev. 2019, 114, 109300.

[69]

Cheng, X.; Du, Z. D.; Ding, Y.; Li, F. Y.; Hua, Z. S.; Liu, H. Bubble management for electrolytic water splitting by surface engineering: A review. Langmuir 2023, 39, 16994–17008.

[70]

Lin, Y.; Fang, J. K.; Wang, W. B.; Wen, Q. L.; Huang, D. J.; Ding, D. F.; Li, Z.; Liu, Y. W.; Shen, Y.; Zhai, T. Y. Operando reconstructed molecule fence to stabilize NiFe-based oxygen evolution catalysts. Adv. Energy Mater. 2023, 13, 2300604.

[71]

Kang, S.; Im, C.; Spanos, I.; Ham, K.; Lim, A.; Jacob, T.; Schlögl, R.; Lee, J. Durable nickel-iron (oxy)hydroxide oxygen evolution electrocatalysts through surface functionalization with tetraphenylporphyrin. Angew. Chem., Int. Ed. 2022, 61, e202214541.

[72]

Kang, X.; Yang, F. N.; Zhang, Z. Y.; Liu, H. M.; Ge, S. Y.; Hu, S. Q.; Li, S. H.; Luo, Y. T.; Yu, Q. M.; Liu, Z. B. et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 2023, 14, 3607.

[73]

Li, Z. X.; Yao, Y. C.; Sun, S. J.; Liang, J.; Hong, S. H.; Zhang, H.; Yang, C. X.; Zhang, X. F.; Cai, Z. W.; Li, J. et al. Carbon oxyanion self-transformation on NiFe oxalates enables long-term ampere-level current density seawater oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316522.

[74]

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord. Chem. Rev. 2020, 418, 213374.

[75]

Li, C. C.; Luo, Z. B.; Wang, T.; Gong, J. L. Surface, bulk, and interface: Rational design of hematite architecture toward efficient photo-electrochemical water splitting. Adv. Mater. 2018, 30, 1707502.

[76]

Dashtian, K.; Shahsavarifar, S.; Usman, M.; Joseph, Y.; Ganjali, M. R.; Yin, Z. Y.; Rahimi-Nasrabadi, M. A comprehensive review on advances in polyoxometalate based materials for electrochemical water splitting. Coord. Chem. Rev. 2024, 504, 215644.

[77]

Song, W.; Li, M. X.; Wang, C.; Lu, X. F. Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting. Carbon Energy 2021, 3, 101–128.

[78]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[79]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[80]

Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.

[81]

Yuan, H. T.; Wang, H. T.; Cui, Y. Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling. Acc. Chem. Res. 2015, 48, 81–90.

[82]

Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; Van De Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294–299.

[83]

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

[84]

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

[85]

Li, Y. P.; Wang, W. T.; Cheng, M. Y.; Feng, Y. F.; Han, X.; Qian, Q. Z.; Zhu, Y.; Zhang, G. Q. Arming Ru with oxygen-vacancy-enriched RuO2 sub-nanometer skin activates superior bifunctionality for pH-universal overall water splitting. Adv. Mater. 2023, 35, 2206351.

[86]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[87]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[88]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[89]

Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

[90]

Liu, Y. W.; Hua, X. M.; Xiao, C.; Zhou, T. F.; Huang, P. C.; Guo, Z. P.; Pan, B. C.; Xie, Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 5087–5092.

[91]

Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.

[92]
Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202316755.
[93]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[94]

Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.

[95]

Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R. K.; Lou, J. et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 2016, 7, 11857.

[96]

Li, R. Q.; Zeng, S. Y.; Sang, B.; Xue, C. Z.; Qu, K. G.; Zhang, Y.; Zhang, W.; Zhang, G. Y.; Liu, X. H.; Deng, J. et al. Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation. Nano Res. 2023, 16, 2543–2550.

[97]

Jung, S. M.; Kang, H. L.; Won, J. K.; Kim, J.; Hwang, C.; Ahn, K.; Chung, I.; Ju, B. K.; Kim, M. G.; Park, S. K. High-performance quantum dot thin-film transistors with environmentally benign surface functionalization and robust defect passivation, ACS Appl. Mater. Interfaces 2018, 10, 3739–3749.

[98]

Zhang, H.; He, X.; Dong, K.; Yao, Y. C.; Sun, S. J.; Zhang, M.; Yue, M.; Yang, C. X.; Zheng, D. D.; Liu, Q. et al. Selenate promoted stability improvement of nickel selenide nanosheet array with an amorphous NiOOH layer for seawater oxidation. Mater. Today Phys. 2023, 38, 101249.

[99]

Wang, T.; Liao, X. Y.; Zhang, T.; Dai, M. L.; Lin, H. CoP aerogels assisted by selenite etching as high activity electrocatalysts for water splitting. Compos. Part B: Eng. 2023, 254, 110601.

[100]

Muthurasu, A.; Dahal, B.; Chhetri, K.; Kim, H. Y. Vertically aligned metal-organic framework derived from sacrificial cobalt nanowire template interconnected with nickel foam supported selenite network as an integrated 3D electrode for overall water splitting. Inorg. Chem. 2020, 59, 3817–3827.

[101]

Gan, Y. H.; Dai, X. P.; Cui, M. L.; Zhao, H. H.; Nie, F.; Ren, Z. T.; Yin, X. L.; Yang, Z. H.; Wu, B. Q.; Cao, Y. H. et al. Synergistic enhancement of the oxygen evolution reaction by MoS x and sulphate on amorphous polymetallic oxide nanosheets. J. Mater. Chem. A, 2021, 9, 9858–9863.

[102]

Chen, R. Z.; Zhang, Z. Y.; Wang, Z. C.; Wu, W.; Du, S. W.; Zhu, W. B.; Lv, H. F.; Cheng, N. C. Constructing air-stable and reconstruction-inhibited transition metal sulfide catalysts via tailoring electron-deficient distribution for water oxidation. ACS Catal. 2022, 12, 13234–13246.

[103]

Feng, D. M.; Ye, R. Z.; Tong, Y.; Ren, X. H.; Chen, P. Z. Engineering cobalt molybdate nanosheet arrays with phosphorus-modified nickel as heterogeneous electrodes for highly-active energy-saving water splitting. J. Colloid Interface Sci. 2023, 636, 425–434.

[104]

Geng, B.; He, Y.; Yan, F.; Zhu, C.; Zhang, X.; Zhang, X.; Chen, Y. Interface engineering of metallic nickel nanoparticles/semiconductive nickel molybdate nanowires for efficiently electrocatalytic water splitting. Mater. Today Nano 2022, 18, 100176.

[105]

Chen, L.; Deng, Z. P.; Chen, Z.; Wang, X. L. Building Ni9S8/MoS2 nanosheets decorated NiMoO4 nanorods heterostructure for enhanced water splitting. Adv. Mater. Interfaces 2021, 8, 2101483.

[106]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[107]

Xue, Z. Q.; Li, X.; Liu, Q. L.; Cai, M. K.; Liu, K.; Liu, M.; Ke, Z. F.; Liu, X. L.; Li, G. Q. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1900430.

[108]

Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

[109]

Luo, Z. Y.; Zhang, H.; Yang, Y. Q.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.

[110]

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

[111]

Wei, C.; Xu, Z. J. The possible implications of magnetic field effect on understanding the reactant of water splitting. Chin. J. Catal. 2022, 43, 148–157.

[112]

Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.

[113]

Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

[114]

Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[115]

Liu, P.; Chen, B.; Liang, C. W.; Yao, W. T.; Cui, Y. Z.; Hu, S. Y.; Zou, P. C.; Zhang, H.; Fan, H. J.; Yang, C. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions. Adv. Mater. 2021, 33, 2007377.

[116]

Zeradjanin, A. R.; Narangoda, P.; Spanos, I.; Masa, J.; Schlögl, R. How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts. Curr. Opin. Electrochem. 2021, 30, 100797.

[117]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[118]

Zeng, T. B.; Guo, B. B.; Xu, Z. Y.; Mo, F. N.; Chen, X. T.; Wang, L. P.; Ding, Y. H.; Bai, J. M. Manageable bubble release through 3D printed microcapillary for highly efficient overall water splitting. Adv. Sci. 2023, 10, 2207495.

[119]

Tang, Y. J.; Lan, Y. Q. Rational design and synthesis of advanced metal-organic frameworks for electrocatalytic water splitting. Sci. China Chem. 2023, 66, 943–965.

[120]

Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280.

[121]

Jiang, W. J.; Tang, T.; Zhang, Y.; Hu, J. S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 2020, 53, 1111–1123.

[122]

Wang, C.; Shang, H. Y.; Jin, L. J.; Xu, H.; Du, Y. K. Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale 2021, 13, 7897–7912.

[123]

Feng, C. R.; Chen, M.; Yang, Z. Y.; Xie, Z. K.; Li, X. M.; Li, S. S.; Abudula, A.; Guan, G. Q. Electrocatalytic seawater splitting for hydrogen production: Recent progress and future prospects. J. Mater. Sci. Technol. 2023, 162, 203–226.

[124]

Cao, L. M.; Zhang, J.; Ding, L. W.; Du, Z. Y.; He, C. T. Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting. J. Energy Chem. 2022, 68, 494–520.

[125]

Wen, Q. L.; Zhao, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Ultrahigh-current-density and long-term-durability electrocatalysts for water splitting. Small 2022, 18, 2104513.

[126]

Obata, K.; Takanabe, K. A permselective CeO x coating to improve the stability of oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 1616–1620.

[127]

Huang, J. B.; Hao, M. Y.; Mao, B. G.; Zheng, L. R.; Zhu, J.; Cao, M. H. The underlying molecular mechanism of fence engineering to break the activity-stability trade-off in catalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202114899.

[128]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA, 2019, 116, 6624–6629.

[129]

Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.

Nano Research
Pages 7864-7879
Cite this article:
Ding D, Liu Y, Xia F. Interface engineering via molecules/ions/groups for electrocatalytic water splitting. Nano Research, 2024, 17(9): 7864-7879. https://doi.org/10.1007/s12274-024-6869-x
Topics:

166

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 04 June 2024
Revised: 30 June 2024
Accepted: 07 July 2024
Published: 24 July 2024
© Tsinghua University Press 2024
Return