AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy

Lulu ChenMinhan Li( )Jia-Nan Zhang( )
Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, Country College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

The favorable reaction microenvironment such as local pH, intermediates concentration, and local cation concentration brought about by the construction of catalysts/electrodes with confined structure could effectively improve the CO2 reduction reaction performance.

Abstract

The electrocatalytic conversion of CO2 to produce fuels and chemicals holds great promise, not only to provide an alternative to fossil feedstocks, but also to use renewable electricity to convert and recycle the greenhouse gas CO2 to mitigate climate problems. However, the selectivity and reaction rates for the conversion of CO2 into desirable carbon-based products, especially multicarbon products with high added value, are still insufficient for commercial applications, which is attributed to insufficiently favourable microenvironmental conditions in the vicinity of the catalyst. The construction of catalysts/electrodes with confined structures can effectively improve the reaction microenvironment in the vicinity of the electrodes and thus effectively direct the reaction towards the desired pathway. In this review, we firstly introduce the effects of the microenvironment at the electrode–electrolyte interface including local pH, local intermediate concentration, and local cation concentration on CO2 reduction reaction (CO2RR) as well as the mechanism of action, and then shed light on the microenvironmental modulation within the confined space, and finally and most importantly, introduce the design strategy of CO2RR catalyst/electrode based on the confinement effect.

References

[1]

Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504.

[2]

Li, M. H.; Ma, Y. Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. P. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew. Chem., Int. Ed. 2021, 60, 11487–11493.

[3]

Zhu, J. X.; Lv, L.; Zaman, S.; Chen, X. B.; Dai, Y. H.; Chen, S. H.; He, G. J.; Wang, D. S.; Mai, L. Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy Environ. Sci. 2023, 16, 4812–4833.

[4]

Yang, P. P.; Gao, M. R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 2023, 52, 4343–4380.

[5]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0-Co δ + interface double-site-mediated C−C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[6]
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202405637.
[7]

Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.

[8]

Xue, D. P.; Xia, H. C.; Yan, W. F.; Zhang, J. N.; Mu, S. C. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 2021, 13, 5.

[9]

Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202402684.

[10]

Li, M. H.; Zhang, J. N. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci. China Chem. 2023, 66, 1288–1317.

[11]

Luo, H. X.; Li, S. J.; Wu, Z. Y.; Liu, Y. B.; Luo, W.; Li, W.; Zhang, D. Q.; Chen, J.; Yang, J. P. Modulating the active hydrogen adsorption on Fe–N interface for boosted electrocatalytic nitrate reduction with ultra-long stability. Adv. Mater. 2023, 35, 2304695.

[12]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Achievements and challenges of copper-based single-atom catalysts for the reduction of carbon dioxide to C2+ products. Exploration 2023, 3, 20230011.

[13]

Ou, H. H.; Li, G. S.; Ren, W.; Pan, B. J.; Luo, G. H.; Hu, Z. F.; Wang, D. S.; Li, Y. D. Atomically dispersed Au-assisted C–C coupling on red phosphorus for CO2 photoreduction to C2H6. J. Am. Chem. Soc. 2022, 144, 22075–22082.

[14]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[15]

Ma, Y. B.; Yu, J. L.; Sun, M. Z.; Chen, B.; Zhou, X. C.; Ye, C. L.; Guan, Z. Q.; Guo, W. H.; Wang, G.; Lu, S. Y. et al. Confined growth of silver-copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, 2110607.

[16]

Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2020, 3, 98–106.

[17]

Zhong, D. Z.; Zhao, Z. J.; Zhao, Q.; Cheng, D. F.; Liu, B.; Zhang, G.; Deng, W. Y.; Dong, H.; Zhang, L.; Li, J. K. et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem., Int. Ed. 2021, 60, 4879–4885.

[18]

Liang, L.; Feng, Q. C.; Wang, X. L.; Hübner, J.; Gernert, U.; Heggen, M.; Wu, L. F.; Hellmann, T.; Hofmann, J. P.; Strasser, P. Electroreduction of CO2 on Au (310)@Cu high-index facets. Angew. Chem., Int. Ed. 2023, 62, e202218039.

[19]

Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

[20]

Wu, Q. Q.; Du, R. A.; Wang, P.; Waterhouse, G. I. N.; Li, J.; Qiu, Y. C.; Yan, K. Y.; Zhao, Y.; Zhao, W. W.; Tsai, H. J. et al. Nanograin-boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 2023, 17, 12884–12894.

[21]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[22]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[23]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[24]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[25]

Lv, L. Y.; Tan, H.; Kong, Y.; Tang, B.; Ji, Q. Q.; Liu, Y. Y.; Wang, C.; Zhuang, Z. C.; Wang, H. J.; Ge, M. et al. Breaking the scaling relationship in C−N coupling via the doping effects for efficient urea electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202401943.

[26]

Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

[27]

Grosse, P.; Gao, D. F.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects. Angew. Chem., Int. Ed. 2018, 57, 6192–6197.

[28]

Schreier, M.; Kenis, P.; Che, F. L.; Hall, A. S. Trends in electrocatalysis: The microenvironment moves to center stage. ACS Energy Lett. 2023, 8, 3935–3940.

[29]

Lv, J. J.; Yin, R. N.; Zhou, L. M.; Li, J.; Kikas, R.; Xu, T.; Wang, Z. J.; Jin, H. L.; Wang, X.; Wang, S. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew. Chem. 2022, 134, e202207252.

[30]

Berto, T. C.; Zhang, L. H.; Hamers, R. J.; Berry, J. F. Electrolyte dependence of CO2 electroreduction: Tetraalkylammonium ions are not electrocatalysts. ACS Catal. 2015, 5, 703–707.

[31]

Li, P. S.; Bi, J. H.; Liu, J. Y.; Zhu, Q. G.; Chen, C. J.; Sun, X. F.; Zhang, J. L.; Han, B. X. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 2022, 13, 1965.

[32]

Sha, Y. F.; Zhang, J. L.; Cheng, X. Y.; Xu, M. Z.; Su, Z. Z.; Wang, Y. Y.; Hu, J. Y.; Han, B. X.; Zheng, L. R. Anchoring ionic liquid in copper electrocatalyst for improving CO2 conversion to ethylene. Angew. Chem., Int. Ed. 2022, 61, e202200039.

[33]

Tan, Z. H.; Zhang, J. L.; Yang, Y. S.; Zhong, J. J.; Zhao, Y. Z.; Hu, J. Y.; Han, B. X.; Chen, Z. J. Alkaline ionic liquid microphase promotes deep reduction of CO2 on copper. J. Am. Chem. Soc. 2023, 145, 21983–21990.

[34]

Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Dinh, C. T.; Edwards, J. P.; Kibria, M. G.; Bushuyev, O. S.; Kelley, S. O.; Sinton, D.; Sargent, E. H. Hydronium-induced switching between CO2 electroreduction pathways. J. Am. Chem. Soc. 2018, 140, 3833–3837.

[35]

Sun, Q. M.; Wang, N.; Xu, Q.; Yu, J. H. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 2020, 32, 2001818.

[36]

Li, H.; Yan, G. L.; Zhao, H. Y.; Howlett, P. C.; Wang, X. G.; Fang, J. Earthworm-inspired Co/Co3O4/CoF2@NSC nanofibrous electrocatalyst with confined channels for enhanced ORR/OER performance. Adv. Mater. 2024, 36, 2311272.

[37]

Doyle, A. D.; Montoya, J. H.; Vojvodic, A. Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 2015, 7, 738–742.

[38]

Wang, L. G.; Su, H.; Tan, G. Y.; Xin, J. H.; Wang, X. G.; Zhang, Z.; Li, Y. P.; Qiu, Y.; Li, X. H.; Li, H. S. et al. Boosting efficient and sustainable alkaline water oxidation on a W-CoOOH-TT pair-sites catalyst synthesized via topochemical transformation. Adv. Mater. 2024, 36, 2302642.

[39]

Xu, H.; Shi, Z. X.; Tong, Y. X.; Li, G. R. Porous microrod arrays constructed by carbon-confined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv. Mater. 2018, 30, 1705442.

[40]

Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co−Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.

[41]

Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

[42]

Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2023, 62, e202217071.

[43]

Ma, M. T.; Xiong, L. K.; Dong, Y.; Bai, Q. Q.; Hua, W.; Zheng, Z. Y.; Lyu, F.; Lian, Y. B.; Wei, Z. H.; Yuan, H. H. et al. Metalloporphyrin frameworks to encapsulate copper oxides for boosting ethylene production in neutral electrolyte. Adv. Funct. Mater. 2024, 35, 2315667.

[44]

O’Mara, P. B.; Wilde, P.; Benedetti, T. M.; Andronescu, C.; Cheong, S.; Gooding, J. J.; Tilley, R. D.; Schuhmann, W. Cascade reactions in nanozymes: Spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 2019, 141, 14093–14097.

[45]

Zhuang, T. T.; Pang, Y. J.; Liang, Z. Q.; Wang, Z. Y.; Li, Y.; Tan, C. S.; Li, J.; Dinh, C. T.; De Luna, P.; Hsieh, P. L. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 2018, 1, 946–951.

[46]

Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.

[47]

Chang, B.; Pang, H.; Raziq, F.; Wang, S. B.; Huang, K. W.; Ye, J. H.; Zhang, H. B. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives. Energy Environ. Sci. 2023, 16, 4714–4758.

[48]

Li, J. X.; Yu, Y.; Xu, S. R.; Yan, W. F.; Mu, S. C.; Zhang, J. N. Function of electron spin effect in electrocatalysts. Acta Phys. -Chim. Sin. 2023, 39, 2302049.

[49]

Li, M. H.; Song, N.; Luo, W.; Chen, J.; Jiang, W.; Yang, J. P. Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 2023, 10, 2204579.

[50]

Huang, J. E.; Li, F. W.; Ozden, A.; Sedighian Rasouli, A.; García de Arquer, F. P.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

[51]

Zhang, J.; Guo, C. X.; Fang, S. S.; Zhao, X. T.; Li, L.; Jiang, H. Y.; Liu, Z. Y.; Fan, Z. Q.; Xu, W. G.; Xiao, J. P. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 2023, 14, 1298.

[52]

Zhang, F.; Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem., Int. Ed. 2020, 59, 1674–1681.

[53]

Sun, B.; Li, Z. Q.; Xiao, D. F.; Liu, H. L.; Song, K. P.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Wang, P.; Dai, Y. et al. Unveiling pH-dependent adsorption strength of *CO2 intermediate over high-density Sn single atom catalyst for acidic CO2-to-HCOOH electroreduction. Angew. Chem., Int. Ed. 2024, 63, e202318874.

[54]

Cao, Y. F.; Chen, Z.; Li, P. H.; Ozden, A.; Ou, P. F.; Ni, W. Y.; Abed, J.; Shirzadi, E.; Zhang, J. Q.; Sinton, D. et al. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun. 2023, 14, 2387.

[55]

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[56]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[57]

Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2006, 36, 161–172.

[58]

Yang, K. L.; Kas, R.; Smith, W. A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 2019, 141, 15891–15900.

[59]

Wei, D. X.; Wang, Y. Q.; Dong, C. L.; Thi Thuy Nga, T.; Shi, Y. C.; Wang, J. L.; Zhao, X. L.; Dong, F.; Shen, S. H. Surface adsorbed hydroxyl: A double-edged sword in electrochemical CO2 reduction over oxide-derived copper. Angew. Chem., Int. Ed. 2023, 62, e202306876.

[60]

Zhao, T. T.; Li, J. H.; Liu, J. D.; Liu, F. M.; Xu, K. Q.; Yu, M.; Xu, W. C.; Cheng, F. Y. Tailoring the catalytic microenvironment of Cu2O with SiO2 to enhance C2+ product selectivity in CO2 electroreduction. ACS Catal. 2023, 13, 4444–4453.

[61]

Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. F. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 136.

[62]

Xing, Z.; Hu, X.; Feng, X. F. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 2021, 6, 1694–1702.

[63]

Deng, T.; Jia, S. Q.; Chen, C. J.; Jiao, J. P.; Chen, X.; Xue, C.; Xia, W.; Xing, X. Q.; Zhu, Q. G.; Wu, H. H. et al. Polymer modification strategy to modulate reaction microenvironment for enhanced CO2 electroreduction to ethylene. Angew. Chem., Int. Ed. 2024, 63, e202313796.

[64]

Liu, M.; Wang, Q. Y.; Luo, T.; Herran, M.; Cao, X. Y.; Liao, W. R.; Zhu, L.; Li, H. M.; Stefancu, A.; Lu, Y. R. et al. Potential alignment in tandem catalysts enhances CO2-to-C2H4 conversion efficiencies. J. Am. Chem. Soc. 2024, 146, 468–475.

[65]

Yin, Z. Y.; Yu, J. Q.; Xie, Z. H.; Yu, S. W.; Zhang, L. Y.; Akauola, T.; Chen, J. G.; Huang, W. Y.; Qi, L.; Zhang, S. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 2022, 144, 20931–20938.

[66]

Yao, Y. C.; Shi, T.; Chen, W. X.; Wu, J. H.; Fan, Y. Y.; Liu, Y. C.; Cao, L.; Chen, Z. A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nat. Commun. 2024, 15, 1257.

[67]

Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu–Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

[68]

Yu, X. H.; Xu, Y. T.; Li, L.; Zhang, M. Z.; Qin, W. H.; Che, F. L.; Zhong, M. Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies. Nat. Commun. 2024, 15, 1711.

[69]

Pan, B. B.; Wang, Y. H.; Li, Y. G. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2022, 2, 1267–1276.

[70]

Singh, M. R.; Kwon, Y.; Lum, Y.; Ager III, J. W.; Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012.

[71]

Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 2017, 139, 11277–11287.

[72]

Liu, H.; Liu, J.; Yang, B. Promotional role of a cation intermediate complex in C2 formation from electrochemical reduction of CO2 over Cu. ACS Catal. 2021, 11, 12336–12343.

[73]

Li, X. Y.; Wang, T.; Cai, Y. C.; Meng, Z. D.; Nan, J. W.; Ye, J. Y.; Yi, J.; Zhan, D. P.; Tian, N.; Zhou, Z. Y. et al. Mechanism of cations suppressing proton diffusion kinetics for electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202218669.

[74]

Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[75]

Shin, S. J.; Choi, H.; Ringe, S.; Won, D. H.; Oh, H. S.; Kim, D. H.; Lee, T.; Nam, D. H.; Kim, H.; Choi, C. H. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat. Commun. 2022, 13, 5482.

[76]

Lee, S. Y.; Kim, J.; Bak, G.; Lee, E.; Kim, D.; Yoo, S.; Kim, J.; Yun, H.; Hwang, Y. J. Probing cation effects on *CO intermediates from electroreduction of CO2 through operando Raman spectroscopy. J. Am. Chem. Soc. 2023, 145, 23068–23075.

[77]

Ma, Z. S.; Yang, Z. L.; Lai, W. C.; Wang, Q. Y.; Qiao, Y.; Tao, H. L.; Lian, C.; Liu, M.; Ma, C.; Pan, A. L. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 2022, 13, 7596.

[78]

Murata, A.; Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 1991, 64, 123–127.

[79]

Yang, X. Z.; Ding, H. W.; Li, S. N.; Zheng, S. S.; Li, J. F.; Pan, F. Cation-induced interfacial hydrophobic microenvironment promotes the C–C coupling in electrochemical CO2 reduction. J. Am. Chem. Soc. 2024, 146, 5532–5542.

[80]

Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 2021, 4, 654–662.

[81]

Gu, J.; Liu, S.; Ni, W. Y.; Ren, W. H.; Haussener, S.; Hu, X. L. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 2022, 5, 268–276.

[82]

Davis, A. R.; Oliver, B. G. A vibrational-spectroscopic study of the species present in the CO2-H2O system. J. Solution Chem. 1972, 1, 329–339.

[83]

Zhang, B. X.; Zhang, J. L.; Hua, M. L.; Wan, Q.; Su, Z. Z.; Tan, X. N.; Liu, L. F.; Zhang, F. Y.; Chen, G.; Tan, D. X. et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 2020, 142, 13606–13613.

[84]

Liu, C. X.; Zhang, M. L.; Li, J. W.; Xue, W. Q.; Zheng, T. T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C−C coupling. Angew. Chem., Int. Ed. 2022, 61, e202113498.

[85]

Zhong, Y. Z.; Kong, X. D.; Song, Z. M.; Liu, Y.; Peng, L. P.; Zhang, L.; Luo, X.; Zeng, J.; Geng, Z. G. Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C–C coupling toward CO2 eletroreduction. Nano Lett. 2022, 22, 2554–2560.

[86]

Rubinstein, I.; Zaltzman, B. Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes. Math. Models Methods Appl. Sci. 2001, 11, 263–300.

[87]

Pham, V. S.; Li, Z. R.; Lim, K. M.; White, J. K.; Han, J. Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane. Phys. Rev. E 2012, 86, 046310.

[88]

Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed. 2017, 56, 796–800.

[89]

Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

[90]

Zi, X.; Zhou, Y. J.; Zhu, L.; Chen, Q.; Tan, Y.; Wang, X. Q.; Sayed, M.; Pensa, E.; Geioushy, R. A.; Liu, K. et al. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products. Angew. Chem., Int. Ed. 2023, 62, e202309351.

[91]

Wang, Z. H.; Li, Y. C.; Zhao, X.; Chen, S. Q.; Nian, Q. S.; Luo, X.; Fan, J. J.; Ruan, D. G.; Xiong, B. Q.; Ren X. D. Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J. Am. Chem. Soc. 2023, 145, 6339–6348.

[92]

Xu, K. Q.; Li, J. H.; Liu, F. M.; Chen, X. J.; Zhao, T. T.; Cheng, F. Y. Favoring CO intermediate stabilization and protonation by crown ether for CO2 electromethanation in acidic media. Angew. Chem., Int. Ed. 2023, 62, e202311968.

[93]

Liu, L. X.; Cai, Y. M.; Du, H. T.; Lu, X. Z.; Li, X.; Liu, F. Q.; Fu, J. J.; Zhu, J. J. Enriching the local concentration of CO intermediates on Cu cavities for the electrocatalytic reduction of CO2 to C2+ products. ACS Appl. Mater. Interfaces 2023, 15, 16673–16679.

[94]

Yu, K.; Sun, K. A.; Cheong, W. C.; Tan, X.; He, C.; Zhang, J. Q.; Li, J. Z.; Chen, C. Oxalate-assisted synthesis of hollow carbon nanocage with Fe single atoms for electrochemical CO2 reduction. Small 2023, 19, 2302611.

[95]

Kim, D.; Yu, S.; Zheng, F.; Roh, I.; Li, Y. F.; Louisia, S.; Qi, Z. Y.; Somorjai, G. A.; Frei, H.; Wang, L. W. et al. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nat. Energy 2020, 5, 1032–1042.

[96]

Zhao, Z. K. Catalytic conversion of carbon oxides in confined spaces: Status and prospects. ChemCatChem 2020, 12, 3960–3981.

[97]

Zhao, Z. X.; Li, Z.; Lin, Y. S. Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5). Ind. Eng. Chem. Res. 2009, 48, 10015–10020.

[98]

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

[99]

Xiao, H.; Cheng, T.; Goddard III, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 2017, 139, 130–136.

[100]

Zhou, Y. X.; Yao, Y. B.; Zhao, R.; Wang, X. X.; Fu, Z. Z.; Wang, D. W.; Wang, H. Z.; Zhao, L.; Ni, W.; Yang, Z. Y. et al. Stabilization of Cu+ via strong electronic interaction for selective and stable CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205832.

[101]

Yang, Z.; Ji, D. G.; Li, Z.; He, Z. D.; Hu, Y.; Yin, J.; Hou, Y. C.; Xi, P. X.; Yan, C. H. CeO2/Cus nanoplates electroreduce CO2 to ethanol with stabilized Cu+ Species. Small 2023, 19, 2303099.

[102]

Zhu, Y. B.; Li, P. Z.; Yang, X. J.; Wang, M. Q.; Zhang, Y. L.; Gao, P. K.; Huang, Q. K.; Wei, Y.; Yang, X.; Wang, D. Y. et al. Confinement of SnCu x O2+ x nanoclusters in zeolites for high-efficient electrochemical carbon dioxide reduction. Adv. Energy Mat. 2023, 13, 2204143.

[103]

Yu, Z. L.; Wu, S. Q.; Chen, L. W.; Hao, Y. C.; Su, X.; Zhu, Z. J. J.; Gao, W. Y.; Wang, B.; Yin, A. X. Promoting the electrocatalytic reduction of CO2 on ultrathin porous bismuth nanosheets with tunable surface-active sites and local pH environments. ACS Appl. Mater. Interfaces 2022, 14, 10648–10655.

[104]

Zhou, W. L.; Zheng, H. J.; Li, X.; Meng, N.; Feng, C.; Yang, H. P.; Hu, Q.; He, C. X. Multiple tuning of the local environment enables selective CO2 electroreduction to ethylene in neutral electrolytes. Adv. Funct. Mater. 2024, 34, 2311226.

[105]

Zhang, B. B.; Wang, Y. H.; Xu, S. M.; Chen, K.; Yang, Y. G.; Kong, Q. H. Tuning nanocavities of Au@Cu2O yolk–shell nanoparticles for highly selective electroreduction of CO2 to ethanol at low potential. RSC Adv. 2020, 10, 19192–19198.

[106]

Yu, F. Q.; Liu, X.; Liao, L. L.; Xia, G. M.; Wang, H. M. Multilayer-cavity tandem catalyst for profiling sequentially coupling of intermediate CO in electrocatalytic reduction reaction of CO2 to multi-carbon products. Small 2023, 19, 2301558.

[107]

Cai, Z. Z.; Cao, N.; Zhang, F. X.; Lv, X. Z.; Wang, K.; He, Y.; Shi, Y.; Bin Wu, H.; Xie, P. F. Hierarchical Ag–Cu interfaces promote C–C coupling in tandem CO2 electroreduction. Appl. Catal. B: Environ. 2023, 325, 122310.

[108]

Pan, Y.; Li, H. D.; Xiong, J.; Yu, Y. D.; Du, H. Y.; Li, S. X.; Wu, Z. C.; Li, S. P.; Lai, J. P.; Wang, L. Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C–C coupling. Appl. Catal. B: Environ. 2022, 306, 121111.

[109]

Fan, Q.; Bao, G. X.; Chen, X. Y.; Meng, Y. C.; Zhang, S.; Ma, X. B. Iron nanoparticles tuned to catalyze CO2 electroreduction in acidic solutions through chemical microenvironment engineering. ACS Catal. 2022, 12, 7517–7523.

[110]

Liu, Z. K.; Yan, T.; Shi, H.; Pan, H.; Cheng, Y. Y.; Kang, P. Acidic electrocatalytic CO2 reduction using space-confined nanoreactors. ACS Appl. Mater. Interfaces 2022, 14, 7900–7908.

[111]

Xue, L. W.; Gao, Z. Y.; Ning, T. S.; Li, W. Z.; Li, J. M.; Yin, J. L.; Xiao, L.; Wang, G. W.; Zhuang, L. Dual-role of polyelectrolyte-tethered benzimidazolium cation in promoting CO2/Pure water co-electrolysis to ethylene. Angew. Chem., Int. Ed. 2023, 62, e202309519.

[112]

Zhong, Y.; Xu, Y.; Ma, J.; Wang, C.; Sheng, S. Y.; Cheng, C. T.; Li, M. X.; Han, L.; Zhou, L. L.; Cai, Z. et al. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly. Angew. Chem., Int. Ed. 2020, 59, 19095–19101.

[113]

Wang, S. W.; Gao, Q.; Xu, C.; Jiang, S.; Zhang, M. Y.; Yin, X. J.; Peng, H. Q.; Liu, B.; Song, Y. F. Molecular surface functionalization of In2O3 to tune interfacial microenvironment for enhanced catalytic performance of CO2 electroreduction. Nano Res. 2024, 17, 1242–1250.

[114]

Kim, C.; Bui, J. C.; Luo, X. Y.; Cooper, J. K.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 2021, 6, 1026–103416.

[115]

Zhu, Z. J. J.; Zhu, Y. H.; Ren, Z. X.; Liu, D.; Yue, F. Y.; Sheng, D. F.; Shao, P. P.; Huang, X. Y.; Feng, X.; Yin, A. X. et al. Covalent organic framework ionomer steering the CO2 electroreduction pathway on Cu at industrial-grade current density. J. Am. Chem. Soc. 2024, 146, 1572–1579.

[116]

Zhao, Y.; Zu, X. L.; Chen, R. H.; Li, X. D.; Jiang, Y. W.; Wang, Z. Q.; Wang, S. M.; Wu, Y.; Sun, Y. F.; Xie, Y. Industrial-current-density CO2-to-C2+ electroreduction by anti-swelling anion-exchange ionomer-modified oxide-derived Cu nanosheets. J. Am. Chem. Soc. 2022, 144, 10446–10454.

[117]

Zhao, Y.; Hao, L.; Ozden, A.; Liu, S. J.; Miao, R. K.; Ou, P. F.; Alkayyali, T.; Zhang, S. Z.; Ning, J.; Liang, Y. X. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2023, 2, 403–412.

[118]

Garg, S.; Xu, Q. C.; Moss, A. B.; Mirolo, M.; Deng, W. Y.; Chorkendorff, I.; Drnec, J.; Seger, B. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 2023, 16, 1631–1643.

[119]

Disch, J.; Bohn, L.; Koch, S.; Schulz, M.; Han, Y. Y.; Tengattini, A.; Helfen, L.; Breitwieser, M.; Vierrath, S. High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. Nat. Commun. 2022, 13, 6099.

[120]

Fan, M. Y.; Huang, J. E.; Miao, R. K.; Mao, Y.; Ou, P. F.; Li, F.; Li, X. Y.; Cao, Y. F.; Zhang, Z. S.; Zhang, J. Q. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 2023, 6, 763–772.

[121]

Qin, H. G.; Du, Y. F.; Bai, Y. Y.; Li, F. Z.; Yue, X.; Wang, H.; Peng, J. Z.; Gu, J. Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte. Nat. Commun. 2023, 14, 5640.

[122]

Fan, J.; Pan, B. B.; Wu, J. L.; Shao, C. C.; Wen, Z. Y.; Yan, Y. C.; Wang, Y. H.; Li, Y. G. Immobilized tetraalkylammonium cations enable metal-free CO2 electroreduction in acid and pure water. Angew. Chem., Int. Ed. 2024, 63, e202317828.

[123]

Pan, F. P.; Duan, X. Y.; Fang, L. Z.; Li, H. Y.; Xu, Z.; Wang, Y.; Wang, T.; Li, T.; Duan, Z. Y.; Chen, K.-J. Long-range confinement-driven enrichment of surface oxygen-relevant species promotes C−C electrocoupling in CO2 reduction. Adv. Energy Mater. 2024, 14, 2303118.

[124]

Li, J. H.; Xu, K. Q.; Liu, F. M.; Li, Y. Z.; Hu, Y. F.; Chen, X. J.; Wang, H.; Xu, W. C.; Ni, Y. X.; Ding, G. Y.; et al. Hollow hierarchical Cu2O-derived electrocatalysts steering CO2 reduction to multi-carbon chemicals at low overpotentials. Adv. Mater. 2023, 35, 2301127.

[125]

Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202315621.

Nano Research
Pages 7880-7899
Cite this article:
Chen L, Li M, Zhang J-N. Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy. Nano Research, 2024, 17(9): 7880-7899. https://doi.org/10.1007/s12274-024-6870-4
Topics:

732

Views

4

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 06 June 2024
Revised: 04 July 2024
Accepted: 07 July 2024
Published: 07 August 2024
© Tsinghua University Press 2024
Return