AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fcc/hcp PtNi heterostructured alloy nanocrystals with ultrathin Pt shell for enhanced catalytic performance towards hydrogen evolution reaction

Tianchun ChengZhi WangShuiyang FangHui JinChongzhi ZhuShuangyang ZhaoGuilin ZhuangQiaoli Chen( )Yihan Zhu
College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
Show Author Information

Graphical Abstract

An ultrathin Pt shell catalysts with an inner core consisting of a PtNi face-centered cubic and hexagonal-close-packed mixed-phase interface were successfully prepared, which promotes electrocatalytic hydrogen evolution activity and stability. Tafel slope results confirm that the mixed-phase interface promotes the water dissociation process.

Abstract

To ensure the green and sustainable advancement of hydrogen energy, there is a critical need for the development of a cost-effective catalyst to address the sluggish kinetics of water electrolysis under alkaline conditions. An approach to achieve this is by constructing ultrathin Pt shell-structured catalysts that offer enhanced electrocatalytic hydrogen evolution reaction performance through modulation of the inner core while minimizing costs. Herein, an ultrathin Pt shell catalyst with an inner core consisting of a PtNi face-centered cubic and hexagonal-close-packed mixed-phase interface (named PtNi-mix) is synthesized through a pre-synthesis method followed by post-acid etching process. Encouragingly, the PtNi-mix catalyst only requires 12.9 mV overpotential to achieve a current density of 10 mA·cm−2 in 1 M KOH, which is much lower than that of the commercial 20 wt.% Pt/C catalyst (71.2 mV). Also, it possesses a high mass activity (7.2 A·mg−1) at an overpotential of 70 mV, which is 9 times higher than that of the commercial 20 wt.% Pt/C catalyst. Additionally, the performance of the PtNi-mix catalyst remains almost unchanged after 10,000 cyclic voltammetry tests, indicating that the catalyst exhibits excellent stability.

Electronic Supplementary Material

Download File(s)
6872_ESM.pdf (1.7 MB)

References

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362.

[3]

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

[4]

Liu, Y. H.; Wang, Q. L.; Zhang, J. C.; Ding, J.; Cheng, Y. Q.; Wang, T.; Li, J.; Hu, F. X.; Yang, H. B.; Liu, B. Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: Syntheses, structures, and properties. Adv. Energy Mater. 2022, 12, 2200928.

[5]

Chen, Z. J.; Han, N.; Wei, W.; Chu, D. W.; Ni, B. J. Dual doping: An emerging strategy to construct efficient metal catalysts for water electrolysis. EcoEnergy 2024, 2, 114–140.

[6]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

[7]

Dinh, C. T.; Jain, A.; De Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X. L.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2018, 4, 107–114.

[8]

Jin, H.; Xu, Z. W.; Hu, Z. Y.; Yin, Z. W.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S. H.; Dong, S. H.; Liu, J. F. et al. Mesoporous Pt@Pt-skin Pt3Ni core–shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 2023, 14, 1518.

[9]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[10]

Guo, Y.; Hou, B.; Cui, X. Z.; Liu, X. C.; Tong, X. L.; Yang, N. J. Pt atomic layers boosted hydrogen evolution reaction in nonacidic media. Adv. Energy Mater. 2022, 12, 2201548.

[11]

Niu, W. X.; Liu, J. W.; Huang, J. T.; Chen, B.; He, Q. Y.; Wang, A. L.; Lu, Q. P.; Chen, Y.; Yun, Q. B.; Wang, J. et al. Unusual 4H-phase twinned noble metal nanokites. Nat. Commun. 2019, 10, 2881.

[12]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

[13]

Ge, Y. Y.; Huang, Z. Q.; Ling, C. Y.; Chen, B.; Liu, G. G.; Zhou, M.; Liu, J. W.; Zhang, X.; Cheng, H. F.; Liu, G. H. et al. Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles. J. Am. Chem. Soc. 2020, 142, 18971–18980.

[14]

Liu, S.; Li, Y.; Yu, X. J.; Han, S. B.; Zhou, Y.; Yang, Y. Q.; Zhang, H.; Jiang, Z.; Zhu, C. W.; Li, W. X. et al. Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation. Nat. Commun. 2022, 13, 4559.

[15]

Yu, W. H.; Zhang, Y. Y.; Qin, Y. N.; Zhang, D.; Liu, K.; Bagliuk, G. A.; Lai, J. P.; Wang, L. High-density frustrated lewis pair for high-performance hydrogen evolution. Adv. Energy Mater. 2023, 13, 2203136.

[16]

Dong, C. Y.; Wang, X. Y.; Zhu, Z. P.; Zhan, C. H.; Lin, X.; Bu, L. Z.; Ye, J. Y.; Wang, Y. C.; Liu, W.; Huang, X. Q. Highly selective synthesis of monoclinic-phased platinum-tellurium nanotrepang for direct formic acid oxidation catalysis. J. Am. Chem. Soc. 2023, 145, 15393–15404.

[17]

Liu, K.; Yang, H.; Jiang, Y. L.; Liu, Z. J.; Zhang, S. M.; Zhang, Z. X.; Qiao, Z.; Lu, Y. M.; Cheng, T.; Terasaki, O. et al. Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity. Nat. Commun. 2023, 14, 2424.

[18]

Shi, Y.; Zhang, D.; Huang, H.; Miao, H. F.; Wu, X. K.; Zhao, H.; Zhan, T. R.; Chen, X. L.; Lai, J. P.; Wang, L. Mixture phases engineering of PtFe nanofoams for efficient hydrogen evolution. Small 2022, 18, 2106947.

[19]

Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L.; Xi, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 259–267.

[20]

Xie, M. H.; Lyu, Z.; Chen, R. H.; Shen, M.; Cao, Z. M.; Xia, Y. N. Pt–Co@Pt octahedral nanocrystals: Enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 2021, 143, 8509–8518.

[21]

Guo, J. C.; Gao, L.; Tan, X.; Yuan, Y. L.; Kim, J.; Wang, Y.; Wang, H.; Zeng, Y. J.; Choi, S. I.; Smith, S. C. et al. Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 10942–10949.

[22]

Ge, Y. Y.; Wang, X. X.; Huang, B.; Huang, Z. Q.; Chen, B.; Ling, C. Y.; Liu, J. W.; Liu, G. H.; Zhang, J.; Wang, G. et al. Seeded synthesis of unconventional 2H-phase Pd alloy nanomaterials for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 17292–17299.

[23]

Hou, C. P.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.; Zheng, L. S. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. Crystengcomm 2013, 15, 6127–6130.

[24]

Cao, Z. M.; Li, H. Q.; Zhan, C. Y.; Zhang, J. W.; Wang, W.; Xu, B. B.; Lu, F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Monocrystalline platinum-nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction. Nanoscale 2018, 10, 5072–5077.

[25]

Geng, J. R.; Zhu, Z.; Ni, Y. X.; Li, H. X.; Cheng, F. Y.; Li, F. J.; Chen, J. Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation. Nano Res. 2022, 15, 280–284.

[26]

Zhuang, J. H.; Liu, X. L.; Ji, Y. J.; Gu, F. N.; Xu, J.; Han, Y. F.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. Phase-controlled synthesis of Ni nanocrystals with high catalytic activity in 4-nitrophenol reduction. J. Mater. Chem. A 2020, 8, 22143–22154.

[27]

Ma, H. R.; Zheng, Z. P.; Zhao, H. S.; Shen, C.; Chen, H. M.; Li, H. Q.; Cao, Z. M.; Kuang, Q.; Lin, H. X.; Xie, Z. X. Trimetallic PtNiCo branched nanocages as efficient and durable bifunctional electrocatalysts towards oxygen reduction and methanol oxidation reactions. J. Mater. Chem. A 2021, 9, 23444–23450.

[28]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. D. et al. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[29]

Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 2016, 15, 1188–1194.

[30]

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

[31]

Li, Q. Q.; Zhang, Q.; Xu, W. L.; Zhao, R.; Jiang, M.; Gao, Y. H.; Zhong, W. D.; Chen, K.; Chen, Y. T.; Li, X. K. et al. Sowing single atom seeds: A versatile strategy for hyper-low noble metal loading to boost hydrogen evolution reaction. Adv. Energy Mater. 2023, 13, 2203955.

[32]

Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.

[33]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

[34]

Zhou, Y. N.; Yu, W. L.; Liu, H. J.; Fan, R. Y.; Han, G. Q.; Dong, B.; Chai, Y. M. Self-integration exactly constructing oxygen-modified MoNi alloys for efficient hydrogen evolution. EcoEnergy 2023, 1, 425–436.

[35]

Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An overview of hydrogen production: Current status, potential, and challenges. Fuel 2022, 316, 123317.

[36]

Megía, P. J.; Vizcaíno, A. J.; Calles, J. A.; Carrero, A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy Fuels 2021, 35, 16403–16415.

[37]

Tan, X. H.; Zhang, M. K.; Chen, D.; Li, W. B.; Gou, W. Y.; Qu, Y. Q.; Ma, Y. Y. Electrochemical etching switches electrocatalytic oxygen evolution pathway of IrO x /Y2O3 from adsorbate evolution mechanism to lattice-oxygen-mediated mechanism. Small 2023, 19, 2303249.

[38]

Yao, Q.; Huang, B. L.; Xu, Y.; Li, L. G.; Shao, Q.; Huang, X. Q. A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy 2021, 84, 105909.

[39]

Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

[40]

Huang, C. L.; Lin, Y. G.; Chiang, C. L.; Peng, C. K.; Raja, D. S.; Hsieh, C. T.; Chen, Y. A.; Chang, S. Q.; Yeh, Y. X.; Lu, S. Y. Atomic scale synergistic interactions lead to breakthrough catalysts for electrocatalytic water splitting. Appl. Catal. B: Environ. 2023, 320, 122016.

[41]

Zheng, X. Z.; Shi, X. Y.; Ning, H. H.; Yang, R.; Lu, B.; Luo, Q.; Mao, S. J.; Xi, L. L.; Wang, Y. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat. Commun. 2023, 14, 4209.

[42]

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

[43]

Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoO x interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

[44]

Zhou, K. L.; Wang, Z. L.; Han, C. B.; Ke, X. X.; Wang, C. H.; Jin, Y. H.; Zhang, Q. Q.; Liu, J. B.; Wang, H.; Yan, H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 2021, 12, 3783.

[45]

Wu, X. K.; Wang, Z. C.; Zhang, D.; Qin, Y. N.; Wang, M. H.; Han, Y.; Zhan, T. R.; Yang, B.; Li, S. X.; Lai, J. P. et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

[46]

Liu, J. Y.; Duan, S.; Shi, H.; Wang, T. Y.; Yang, X. X.; Huang, Y. H.; Wu, G.; Li, Q. Rationally designing efficient electrocatalysts for direct seawater splitting: Challenges, achievements, and promises. Angew. Chem., Int. Ed. 2022, 61, e202210753.

[47]

Xie, H. P.; Zhao, Z. Y.; Liu, T.; Wu, Y. F.; Lan, C.; Jiang, W. C.; Zhu, L. Y.; Wang, Y. P.; Yang, D. S.; Shao, Z. P. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678.

Nano Research
Pages 9822-9829
Cite this article:
Cheng T, Wang Z, Fang S, et al. Fcc/hcp PtNi heterostructured alloy nanocrystals with ultrathin Pt shell for enhanced catalytic performance towards hydrogen evolution reaction. Nano Research, 2024, 17(11): 9822-9829. https://doi.org/10.1007/s12274-024-6872-2
Topics:

540

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 May 2024
Revised: 05 July 2024
Accepted: 08 July 2024
Published: 29 July 2024
© Tsinghua University Press 2024
Return