AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing an OH-enriched microenvironment on the electrode surface for natural seawater electrolysis

Jiaxin Guo1Ruguang Wang1Quanlu Wang1Ruize Ma1Jisi Li1Erling Zhao1Jieqiong Shan2Tao Ling1( )
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
Show Author Information

Graphical Abstract

We demonstrate the criteria for selecting Lewis acid oxides and the origin of OH– enrichment in chlorine chemistry inhibition on the catalyst surface. We find that the lower pKa value of the Lewis acid oxide, the higher concentration of OH– enriched on Co3O4 surface, and the lower Cl concentration.

Abstract

Powered by clean energy, the hydrogen fuel production from seawater electrolysis is a sustainable green hydrogen technology, however, chlorine corrosion and correlative oxidation reactions severely erode the catalysts. Our previous work demonstrates that direct seawater electrolysis without a desalination process and strong alkali addition can be realized by introducing a hard Lewis acid oxide on the catalyst surface to capture OH. However, the criteria for selecting Lewis acid oxides and the origin of OH enrichment in chlorine chemistry inhibition on the catalyst surface remain unexplored. Here, we compare the ability of a series of Lewis acid oxides with different acidity constants (pKa), including MnO2, Fe2O3, and Cr2O3, to enrich OH on the Co3O4 anode catalyst surface. Comprehensive analyses suggest that the lower pKa value of the Lewis acid oxide, the higher concentration of OH enriched on Co3O4 surface, and the lower Cl concentration. As established correlation among pKa of Lewis acid oxide, OH enrichment and Cl repulsion provide direct guidance for future design of highly active, selective and durable catalysts for natural seawater electrolysis.

Electronic Supplementary Material

Download File(s)
6873_ESM.pdf (1.5 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[3]

Jin, H. Y.; Xu, J.; Liu, H.; Shen, H. F.; Yu, H. M.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 2023, 9, eadi7755.

[4]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[5]

Xie, H. P.; Zhao, Z. Y.; Liu, T.; Wu, Y. F.; Lan, C.; Jiang, W. C.; Zhu, L. Y.; Wang, Y. P.; Yang, D. S.; Shao, Z. P. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678.

[6]

He, W. J.; Li, X. X.; Tang, C.; Zhou, S. J.; Lu, X. Y.; Li, W. H.; Li, X. Y.; Zeng, X. Y.; Dong, P.; Zhang, Y. J. et al. Materials design and system innovation for direct and indirect seawater electrolysis. ACS Nano 2023, 17, 22227–22239.

[7]
Chen, L.; Yu, C.; Dong, J. T.; Han, Y. N.; Huang, H. L.; Li, W. B.; Zhang, Y. F.; Tan, X. Y.; Qiu, J. S. Seawater electrolysis for fuels and chemicals production: Fundamentals, achievements, and perspectives. Chem. Soc. Rev., in press, https://doi.org/10.1039/D3CS00822C.
[8]

Yang, Y. D.; Xiao, Y.; Zhang, L. J.; Wang, H. T.; Chen, K. H.; Lin, W. X.; Jin, N.; Sun, C.; Shao, Y. C.; Chen, J. L. et al. Encaging Co nanoparticle in atomic Co–N4-dispersed graphite nanopocket evokes high oxygen reduction activity for flexible Zn-air battery. Appl. Catal. B: Environ. Energy 2024, 347, 123792.

[9]

Yang, Y. Y.; Hu, C. J.; Shan, J. Q.; Cheng, C. Q.; Han, L. L.; Li, X. Z.; Wang, R. G.; Xie, W.; Zheng, Y.; Ling, T. Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem., Int. Ed. 2023, 62, e202300989.

[10]

Hsu, S. H.; Miao, J. W.; Zhang, L. P.; Gao, J. J.; Wang, H. M.; Tao, H. B.; Hung, S. F.; Vasileff, A.; Qiao, S. Z.; Liu, B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 2018, 30, 1707261.

[11]

Keane, T. P.; Veroneau, S. S.; Hartnett, A. C.; Nocera, D. G. Generation of pure oxygen from briny water by binary catalysis. J. Am. Chem. Soc. 2023, 145, 4989–4993.

[12]

Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. MnO x /IrO x as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270–10281.

[13]

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

[14]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[15]

Zhang, L. J.; Li, X. H.; Chen, Y. Q.; Wang, H. T.; Chen, Y. H.; Chen, K. H.; Shao, Y. C.; Lin, W. L.; Pao, C. W.; Wang, H. et al. Strain-controlled intermetallic PtZn nanoparticles via N-doping propel highly efficient oxygen reduction electrocatalysis. ACS Sustain. Chem. Eng. 2024, 12, 405–415.

[16]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[17]

Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.

[18]

Liu, W.; Yu, J. G.; Sendeku, M. G.; Li, T. S.; Gao, W. Q.; Yang, G. T.; Kuang, Y.; Sun, X. M. Ferricyanide armed anodes enable stable water oxidation in saturated saline water at 2 A/cm2. Angew. Chem., Int. Ed. 2023, 62, e202309882.

[19]

Xu, W. W.; Wang, Z. F.; Liu, P. Y.; Tang, X.; Zhang, S. X.; Chen, H. C.; Yang, Q. H.; Chen, X.; Tian, Z. Q.; Dai, S. et al. Ag nanoparticle-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 2024, 36, 2306062.

[20]

Shi, H.; Wang, T. Y.; Liu, J. Y.; Chen, W. W.; Li, S. Z.; Liang, J. S.; Liu, S. X.; Liu, X.; Cai, Z.; Wang, C. et al. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 2023, 14, 3934.

[21]

Xu, X. W.; Lu, Y.; Shi, J. Q.; Hao, X. Y.; Ma, Z. L.; Yang, K.; Zhang, T. Y.; Li, C.; Zhang, D. N.; Huang, X. L. et al. Corrosion-resistant cobalt phosphide electrocatalysts for salinity tolerance hydrogen evolution. Nat. Commun. 2023, 14, 7708.

[22]

Tang, J.; Sun, S. J.; He, X.; Zhang, H.; Yang, C. X.; Zhang, M.; Yue, M.; Wang, H. F.; Sun, Y. T.; Luo, Y. L. et al. An amorphous FeMoO4 nanorod array enabled high-efficiency oxygen evolution electrocatalysis in alkaline seawater. Nano Res. 2024, 17, 2270–2275.

[23]

Yue, M.; He, X.; Sun, S. J.; Sun, Y. T.; Hamdy, M. S.; Benaissa, M.; Salih, A. A. M.; Liu, J.; Sun, X. P. Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation. Nano Res. 2024, 17, 1050–1055.

[24]

Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.

[25]

Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.

[26]

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

[27]

Li, J. S.; Zheng, C. Y.; Zhao, E. L.; Mao, J.; Cheng, Y. H.; Liu, H.; Hu, Z. P.; Ling, T. Ferromagnetic ordering correlated strong metal-oxygen hybridization for superior oxygen reduction reaction activity. Proc. Natl. Acad. Sci. USA 2023, 120, e2307901120.

[28]

Wang, N.; Ou, P. F.; Hung, S. F.; Huang, J. E.; Ozden, A.; Abed, J.; Grigioni, I.; Chen, C.; Miao, R. K.; Yan, Y. et al. Strong-proton-adsorption Co-based electrocatalysts achieve active and stable neutral seawater splitting. Adv. Mater. 2023, 35, 2210057.

[29]

Xu, Y. S.; Lv, H. H.; Lu, H. S.; Quan, Q. H.; Li, W. Z.; Cui, X. J.; Liu, G. B.; Jiang, L. H. Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy 2022, 98, 107295.

[30]

Lin, K. W.; Xie, H. P.; Peng, Q. L.; Zhang, Y.; Shen, S. L.; Jiang, Y. H.; Ni, M.; Chen, B. Hydrogen production from seawater splitting enabled by on-line flow-electrode capacitive deionization. Renew. Sustain. Energy Rev. 2023, 183, 113525.

[31]

Kunimatsu, K.; Yoda, T.; Tryk, D. A.; Uchida, H.; Watanabe, M. In situ ATR-FTIR study of oxygenreduction at the Pt/Nafion interface. Phys. Chem. Chem. Phys. 2010, 12, 621–629.

[32]

Zhu, S. Q.; Qin, X. P.; Yao, Y.; Shao, M. H. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 2020, 142, 8748–8754.

[33]

Kitano, S.; Noguchi, T. G.; Nishihara, M.; Kamitani, K.; Sugiyama, T.; Yoshioka, S.; Miwa, T.; Yoshizawa, K.; Staykov, A.; Yamauchi, M. Heterointerface created on Au-cluster-loaded unilamellar hydroxide electrocatalysts as a highly active site for the oxygen evolution reaction. Adv. Mater. 2022, 34, 2110552.

[34]

Wang, Q. Y.; Gong, Y. J.; Zi, X.; Gan, L.; Pensa, E.; Liu, Y. X.; Xiao, Y. S.; Li, H. M.; Liu, K.; Fu, J. W. et al. Coupling nano and atomic electric field confinement for robust alkaline oxygen evolution. Angew. Chem., Int. Ed. 2024, 62, e202405438.

[35]

Meng, H. B.; Wu, B.; Zhang, D. T.; Zhu, X. H.; Luo, S. Z.; You, Y.; Chen, K.; Long, J. C.; Zhu, J. X.; Liu, L. P. et al. Optimizing electronic synergy of atomically dispersed dual-metal Ni–N4 and Fe–N4 sites with adjacent Fe nanoclusters for high-efficiency oxygen electrocatalysis. Energy Environ. Sci. 2024, 17, 704–716.

[36]

Yokoyama, Y.; Miyazaki, K.; Kondo, Y.; Miyahara, Y.; Fukutsuka, T.; Abe, T. In situ local pH measurements with hydrated iridium oxide ring electrodes in neutral pH aqueous solutions. Chem. Lett. 2020, 49, 195–198.

[37]

Tamura, H.; Oda, T.; Nagayama, M.; Furuichi, R. Acid-base dissociation of surface hydroxyl groups on manganese dioxide in aqueous solutions. J. Electrochem. Soc. 1989, 136, 2782–2786.

[38]

Li, N.; D. Bediako, K.; Hadt, R. G.; Hayes, D.; Kempa, T. J.; von Cube, F.; Bell, D. C.; Chen, L. X.; Nocera, D. G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486–1491.

[39]

Magaz, G. E.; Rodenas, L. G.; Morando, P. J.; Blesa, M. A. Electrokinetic behaviour and interaction with oxalic acid of different hydrous chromium(III) oxides. Croat. Chem. Acta 1998, 71, 917–927.

[40]

Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

[41]

Yamanaka, K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn. J. Appl. Phys. 1989, 28, 632–637.

Nano Research
Pages 9483-9489
Cite this article:
Guo J, Wang R, Wang Q, et al. Constructing an OH-enriched microenvironment on the electrode surface for natural seawater electrolysis. Nano Research, 2024, 17(11): 9483-9489. https://doi.org/10.1007/s12274-024-6873-1
Topics:

283

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 25 June 2024
Revised: 06 July 2024
Accepted: 08 July 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return