AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Composition-dependent catalytic performance of AuxAg25−x alloy nanoclusters for oxygen reduction reaction

Chuan Mu1,2Biao Wang3Qiaofeng Yao4,5( )Qian He6( )Jianping Xie1,2( )
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 3700072, China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering, Drive 1, Singapore 117575, Singapore
Show Author Information

Graphical Abstract

Abstract

Oxygen reduction reaction (ORR) occurs at the cathode of electrochemical devices like fuel cells and in the Huron–Dow process, reducing oxygen to water or hydrogen peroxide. Over the past years, various electrocatalysts with enhanced activity, selectivity, and durability have been developed for ORR. However, an atomic-level understanding of how materials composition affects electrocatalytic performance has not yet been achieved, which prevents us from designing efficient catalysts based on the requirements of practical applications. This is partially because of the polydispersity of traditional catalysts and their unknown structure dynamics in the electrocatalytic reactions. Here we establish a full-spectrum of atomically precise and robust AuxAg25−x(MHA)18 (x = 0–25, and MHA = 6-mercaptohexanoic acid) nanoclusters (NCs) and systematically investigate their composition-dependent catalytic performance for ORR at the atomic level. The results show that, with the increasing number of Au atoms in AuxAg25−x(MHA)18 NCs, the electron transfer number gradually decreases from 3.9 for Ag25(MHA)18 to 2.1 for Au25(MHA)18, indicating that the dominant oxygen reduction product alters from water to hydrogen peroxide. Density functional theory simulations reveal that the Gibbs free energy of OOH adsorption (∆GOOH*) on Au25 is closest to the ideal ∆GOOH* of 4.22 eV to produce H2O2, while Ag alloying makes the ∆GOOH* deviate from the optimal value and leads to the production of water. This study suggests that alloy NCs are promising paradigms for unveiling composition-dependent electrocatalytic performance of metal nanoparticles at the atomic level.

Electronic Supplementary Material

Download File(s)
6875_ESM.pdf (9.4 MB)

References

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Yang, Y.; Luo, M. C.; Zhang, W. Y.; Sun, Y. J.; Chen, X.; Guo, S. J. Metal surface and interface energy electrocatalysis: Fundamentals, performance engineering, and opportunities. Chem 2018, 4, 2054–2083.

[3]

Da, Y. M.; Jiang, R.; Tian, Z. L.; Han, X. P.; Chen, W.; Hu, W. B. The applications of single-atom alloys in electrocatalysis: Progress and challenges. SmartMat 2022, 4, e1136.

[4]

Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.

[5]

Novaes, L. F. T.; Liu, J. J.; Shen, Y. F.; Lu, L. X.; Meinhardt, J. M.; Lin, S. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 2021, 50, 7941–8002.

[6]

Zhou, X. L.; Liu, H.; c, B. Y.; Ostrikov, K.; Zheng, Y.; Qiao, S. Z. Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 2022, 3, 111–129.

[7]

Yang, H.; Han, X. T.; Douka, A. I.; Huang, L.; Gong, L. Q.; Xia, C. F.; Park, H. S.; Xia, B. Y. Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2007602.

[8]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[9]

Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

[10]

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

[11]

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

[12]

Fu, S. F.; Zhu, C. Z.; Song, J. H.; Du, D.; Lin, Y. H. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700363.

[13]

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

[14]

Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J. P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells. Energy Environ. Sci. 2011, 4, 114–130.

[15]

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

[16]

Tang, C.; Zhang, Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 2017, 29, 1604103.

[17]

Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

[18]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[19]

Zheng, Z. K.; Ng, Y. H.; Wang, D. W.; Amal, R. Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 2016, 28, 9949–9955.

[20]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[21]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[22]

Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

[23]

Zhao, Q. L.; Wang, Y. A.; Lai, W. H.; Xiao, F.; Lyu, Y. X.; Liao, C. Z.; Shao, M. H. Approaching a high-rate and sustainable production of hydrogen peroxide: Oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 2021, 14, 5444–5456.

[24]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[25]

Yao, Q. F.; Yuan, X.; Chen, T. K.; Leong, D. T.; Xie, J. P. Engineering functional metal materials at the atomic level. Adv. Mater. 2018, 30, 1802751.

[26]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[27]

Sang, D. M.; Luo, X. X.; Liu, J. B. Biological interaction and imaging of ultrasmall gold nanoparticles. Nano-Micro Lett. 2024, 16, 44.

[28]

Zhuang, S. L.; Chen, D.; You, Q.; Fan, W. T.; Yang, J.; Wu, Z. K. Thiolated, reduced palladium nanoclusters with resolved structures for the electrocatalytic reduction of oxygen. Angew. Chem., Int. Ed. 2022, 61, e202208751.

[29]

Luo, X. X.; Kong, J.; Xiao, H.; Sang, D. M.; He, K.; Zhou, M.; Liu, J. B. Noncovalent interaction guided precise photoluminescence regulation of gold nanoclusters in both isolate species and aggregate states. Angew. Chem., Int. Ed. 2024, 63, e202404129.

[30]

Liu, Z. H.; Chen, J. M.; Li, B.; Jiang, D. E.; Wang, L.; Yao, Q. F.; Xie, J. P. Enzyme-inspired ligand engineering of gold nanoclusters for electrocatalytic microenvironment manipulation. J. Am. Chem. Soc. 2024, 146, 11773–11781.

[31]

Li, S. T.; Nagarajan, A. V.; Alfonso, D. R.; Sun, M. K.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 6351–6356.

[32]

Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.

[33]

Li, Y. W.; Li, S. T.; Nagarajan, A. V.; Liu, Z. Y.; Nevins, S.; Song, Y. B.; Mpourmpakis, G.; Jin, R. C. Hydrogen evolution electrocatalyst design: Turning inert gold into active catalyst by atomically precise nanochemistry. J. Am. Chem. Soc. 2021, 143, 11102–11108.

[34]

Li, M. F.; Zhang, B.; Cheng, T.; Yu, S.; Louisia, S.; Chen, C. B.; Chen, S. P.; Cestellos-Blanco, S.; Goddard III, W. A.; Yang, P. D. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Res. 2021, 14, 3509–3513.

[35]

Han, M.; Guo, M. H.; Yun, Y. P.; Xu, Y. J.; Sheng, H. T.; Chen, Y. X.; Du, Y. X.; Ni, K.; Zhu, Y. W.; Zhu, M. Z. Effect of heteroatom and charge reconstruction in atomically precise metal nanoclusters on electrochemical synthesis of ammonia. Adv. Funct. Mater. 2022, 32, 2202820.

[36]

Liu, Z. H.; Tan, H.; Li, B.; Hu, Z. H.; Jiang, D. E.; Yao, Q. F.; Wang, L.; Xie, J. P. Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters. Nat. Commun. 2023, 14, 3374.

[37]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[38]

Chen, L. Y.; Sun, F.; Shen, Q. L.; Qin, L. B.; Liu, Y. G.; Qiao, L.; Tang, Q.; Wang, L. K.; Tang, Z. H. Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: Probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction. Nano Res. 2022, 15, 8908–8913.

[39]

Ma, G. Y.; Sun, F.; Qiao, L.; Shen, Q. L.; Wang, L.; Tang, Q.; Tang, Z. H. Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 2023, 16, 10867–10872.

[40]

Tan, Y. S.; Sun, G. L.; Jiang, T. T.; Liu, D.; Li, Q. Z.; Yang, S.; Chai, J. S.; Gao, S.; Yu, H. Z.; Zhu, M. Z. Symmetry breaking enhancing the activity of electrocatalytic CO2 reduction on an icosahedron-kernel cluster by Cu atoms regulation. Angew. Chem., Int. Ed. 2024, 63, e202317471.

[41]

Zhuang, S. L.; Chen, D.; Liao, L. W.; Zhao, Y.; Xia, N.; Zhang, W. H.; Wang, C. M.; Yang, J.; Wu, Z. K. Hard-sphere random close-packed Au47Cd2(TBBT)31 nanoclusters with a Faradaic efficiency of up to 96% for electrocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2020, 59, 3073–3077.

[42]

Zou, X. J.; He, S. P.; Kang, X.; Chen, S.; Yu, H. Z.; Jin, S.; Astruc, D.; Zhu, M. Z. New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chem. Sci. 2021, 12, 3660–3667.

[43]

Zheng, K. Y.; Yuan, X.; Xie, J. P. Effect of ligand structure on the size control of mono- and bi-thiolate-protected silver nanoclusters. Chem. Commun. 2017, 53, 9697–9700.

[44]

Cao, Y. T.; Fung, V.; Yao, Q. F.; Chen, T. K.; Zang, S. Q.; Jiang, D. E.; Xie, J. P. Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nat. Commun. 2020, 11, 5498.

[45]

Zheng, K. Y.; Xie, J. P. Composition-dependent antimicrobial ability of full-spectrum Au x Ag25− x alloy nanoclusters. ACS Nano 2020, 14, 11533–11541.

[46]

Dou, X. Y.; Yuan, X.; Yao, Q. F.; Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Facile synthesis of water-soluble Au25− x Ag x nanoclusters protected by mono- and bi-thiolate ligands. Chem. Commun. 2014, 50, 7459–7462.

[47]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

[48]

Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

[49]

White, J. A.; Bird, D. M. Implementation of gradient-corrected exchange-correlation potentials in Car–Parrinello total-energy calculations. Phys. Rev. B 1994, 50, 4954–4957.

[50]

MacDonald, A. H. Comment on special points for Brillouin-zone integrations. Phys. Rev. B 1978, 18, 5897–5899.

[51]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[52]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[53]

Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

[54]

Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]: The “golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

[55]

Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

[56]

Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.

[57]

Negishi, Y.; Iwai, T.; Ide, M. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem. Commun. 2010, 46, 4713–4715.

[58]

Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. A quantum alloy: The ligand-protected Au25− x Ag x (SR)18 cluster. J. Phys. Chem. C 2013, 117, 7914–7923.

[59]

Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed. 2016, 128, 5843–5847.

[60]

Kumara, C.; Aikens, C. M.; Dass, A. X-ray crystal structure and theoretical analysis of Au25− x Ag x (SCH2CH2Ph)18 alloy. J. Phys. Chem. Lett. 2014, 5, 461–466.

[61]

Zhang, W.; Gao, Y. J.; Fang, Q. J.; Pan, J. K.; Zhu, X. C.; Deng, S. W.; Yao, Z. H.; Zhuang, G. L.; Wang, J. G. High-performance single-atom Ni catalyst loaded graphyne for H2O2 green synthesis in aqueous media. J. Colloid Interface Sci. 2021, 599, 58–67.

[62]

Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054.

Nano Research
Cite this article:
Mu C, Wang B, Yao Q, et al. Composition-dependent catalytic performance of AuxAg25−x alloy nanoclusters for oxygen reduction reaction. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6875-z
Topics:

516

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 June 2024
Revised: 08 July 2024
Accepted: 09 July 2024
Published: 21 August 2024
© Tsinghua University Press 2024
Return