Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanomaterials have revolutionized the battery industry by enhancing energy storage capacities and charging speeds, and their application in hydrogen (H2) storage likewise holds strong potential, though with distinct challenges and mechanisms. H2 is a crucial future zero-carbon energy vector given its high gravimetric energy density, which far exceeds that of liquid hydrocarbons. However, its low volumetric energy density in gaseous form currently requires storage under high pressure or at low temperature. This review critically examines the current and prospective landscapes of solid-state H2 storage technologies, with a focus on pragmatic integration of advanced materials such as metal-organic frameworks (MOFs), magnesium-based hybrids, and novel sorbents into future energy networks. These materials, enhanced by nanotechnology, could significantly improve the efficiency and capacity of H2 storage systems by optimizing H2 adsorption at the nanoscale and improving the kinetics of H2 uptake and release. We discuss various H2 storage mechanisms—physisorption, chemisorption, and the Kubas interaction—analyzing their impact on the energy efficiency and scalability of storage solutions. The review also addresses the potential of “smart MOFs”, single-atom catalyst-doped metal hydrides, MXenes and entropy-driven alloys to enhance the performance and broaden the application range of H2 storage systems, stressing the need for innovative materials and system integration to satisfy future energy demands. High-throughput screening, combined with machine learning algorithms, is noted as a promising approach to identify patterns and predict the behavior of novel materials under various conditions, significantly reducing the time and cost associated with experimental trials. In closing, we discuss the increasing involvement of various companies in solid-state H2 storage, particularly in prototype vehicles, from a techno-economic perspective. This forward-looking perspective underscores the necessity for ongoing material innovation and system optimization to meet the stringent energy demands and ambitious sustainability targets increasingly in demand.
He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.
Li, G. Q.; Kobayashi, H.; Taylor, J. M.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Toh, S.; Matsumura, S. et al. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. Nat. Mater. 2014, 13, 802–806.
Chen, Z. J.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K. Porous materials for hydrogen storage. Chem 2022, 8, 693–716.
Nasser, M.; Hassan, H. Techno-enviro-economic analysis of hydrogen production via low and high temperature electrolyzers powered by PV/Wind turbines/Waste heat. Energy Convers. Manage. 2023, 278, 116693.
Boretti, A. Electric vehicles with small batteries and high-efficiency on-board electricity production. Energy Storage 2019, 1, e75.
Sikiru, S.; Oladosu, T. L.; Amosa, T. I.; Olutoki, J. O.; Ansari, M. N. M.; Abioye, K. J.; Rehman, Z. U.; Soleimani, H. Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int. J. Hydrogen Energy 2024, 56, 1152–1182.
Yue, M. L.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180.
Ball, M.; Weeda, M. The hydrogen economy-vision or reality. Int. J. Hydrogen Energy 2015, 40, 7903–7919.
Olabi, A. G.; Bahri, A. S.; Abdelghafar, A. A.; Baroutaji, A.; Sayed, E. T.; Alami, A. H.; Rezk, H.; Abdelkareem, M. A. Large-vscale hydrogen production and storage technologies: Current status and future directions. Int. J. Hydrogen Energy 2021, 46, 23498–23528.
Nadeem, F.; Hussain, S. M. S.; Tiwari, P. K.; Goswami, A. K.; Ustun, T. S. Comparative review of energy storage systems, their roles, and impacts on future power systems. IEEE Access 2019, 7, 4555–4585.
Lehmann, M. L.; Tyler, L.; Self, E. C.; Yang, G.; Nanda, J.; Saito, T. Membrane design for non-aqueous redox flow batteries: Current status and path forward. Chem 2022, 8, 1611–1636.
García-Holley, P.; Schweitzer, B.; Islamoglu, T.; Liu, Y. Y.; Lin, L.; Rodriguez, S.; Weston, M. H.; Hupp, J. T.; Gómez-Gualdrón, D. A.; Yildirim, T. et al. Benchmark study of hydrogen storage in metal-organic frameworks under temperature and pressure swing conditions. ACS Energy Lett. 2018, 3, 748–754.
Zheng, J. Y.; Liu, X. X.; Xu, P.; Liu, P. F.; Zhao, Y. Z.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057.
Monteiro, E.; Brito, P. S. D. Hydrogen supply chain: Current status and prospects. Energy Storage 2023, 5, e466.
Ratnakar, R. R.; Gupta, N.; Zhang, K.; Van Doorne, C.; Fesmire, J.; Dindoruk, B.; Balakotaiah, V. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168.
Ramirez-Vidal, P.; Sdanghi, G.; Celzard, A.; Fierro, V. High hydrogen release by cryo-adsorption and compression on porous materials. Int. J. Hydrogen Energy 2022, 47, 8892–8915.
Chen, M.; Wang, Y. Q.; Xiao, X. Z.; Lu, Y. H.; Zhang, M.; Zheng, J. G.; Chen, L. X. Highly efficient ZrH2 nanocatalyst for the superior hydrogenation kinetics of magnesium hydride under moderate conditions: Investigation and mechanistic insights. Appl. Surf. Sci. 2021, 541, 148375.
Zhu, W.; Ren, L.; Lu, C.; Xu, H.; Sun, F. Z.; Ma, Z. W.; Zou, J. X. Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. Acs Nano 2021, 15, 18494–18504.
Ren, L.; Li, Y. H.; Li, Z.; Lin, X.; Lu, C.; Ding, W. J.; Zou, J. X. Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump. Nano-Micro Lett. 2024, 16, 160.
Majumdar, A.; Deutch, J. M.; Prasher, R. S.; Griffin, T. P. A framework for a hydrogen economy. Joule 2021, 5, 1905–1908.
Allendorf, M. D.; Hulvey, Z.; Gennett, T.; Ahmed, A.; Autrey, T.; Camp, J.; Cho, E. S.; Furukawa, H.; Haranczyk, M.; Head-Gordon, M. et al. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ. Sci. 2018, 11, 2784–2812.
Santhosh, A.; Kang, S. Y.; Keilbart, N.; Wood, B. C.; Klassen, T.; Jerabek, P.; Dornheim, M. Influence of near-surface oxide layers on TiFe hydrogenation: Mechanistic insights and implications for hydrogen storage applications. J. Mater. Chem. A 2023, 11, 18776–18789.
Ding, F.; Yakobson, B. I. Challenges in hydrogen adsorptions: From physisorption to chemisorption. Front. Phys. 2011, 6, 142–150.
Niaz, S.; Manzoor, T.; Pandith, A. H. Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 457–469.
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.
Züttel, A.; Sudan, P.; Mauron, P.; Kiyobayashi, T.; Emmenegger, C.; Schlapbach, L. Hydrogen storage in carbon nanostructures. Int. J. Hydrogen Energy 2002, 27, 203–212.
Zhou, Y. G.; Zu, X. T.; Gao, F.; Nie, J. L.; Xiao, H. Y. Adsorption of hydrogen on boron-doped graphene: A first-principles prediction. J. Appl. Phys. 2009, 105, 014309.
Ataca, C.; Aktürk, E.; Ciraci, S.; Ustunel, H. High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 2008, 93, 043123.
Tozzini, V.; Pellegrini, V. Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys. 2013, 15, 80–89.
Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 2005, 102, 10439–10444.
Barghi, S. H.; Tsotsis, T. T.; Sahimi, M. Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. Int. J. Hydrogen Energy 2014, 39, 1390–1397.
Rather, S. U. Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: A review. Int. J. Hydrogen Energy 2020, 45, 4653–4672.
Mohan, M.; Sharma, V. K.; Kumar, E. A.; Gayathri, V. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35.
Lyu, J. Z.; Kudiiarov, V.; Lider, A. An overview of the recent progress in modifications of carbon nanotubes for hydrogen adsorption. Nanomaterials 2020, 10, 255.
Mauron, P.; Remhof, A.; Bliersbach, A.; Borgschulte, A.; Züttel, A.; Sheptyakov, D.; Gaboardi, M.; Choucair, M.; Pontiroli, D.; Aramini, M. et al. Reversible hydrogen absorption in sodium intercalated fullerenes. Int. J. Hydrogen Energy 2012, 37, 14307–14314.
Langmi, H. W.; Ren, J. W.; North, B.; Mathe, M.; Bessarabov, D. Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 2014, 128, 368–392.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Li, H.; Wang, K. C.; Sun, Y. J.; Lollar, C. T.; Li, J. L.; Zhou, H. C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121.
Schoedel, A.; Ji, Z.; Yaghi, O. M. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 2016, 1, 16034.
Rowsell, J. L. C.; Yaghi, O. M. Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem., Int. Ed. 2005, 44, 4670–4679.
Chen, M. H.; Li, H. R.; Liu, C. X.; Liu, J. Y.; Feng, Y. Q.; Wee, A. G. H.; Zhang, B. Porphyrin- and porphyrinoid-based covalent organic frameworks (COFs): From design, synthesis to applications. Coord. Chem. Rev. 2021, 435, 213778.
Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.
Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A. Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 2008, 130, 11580–11581.
Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.
Dong, J. X.; Wang, X. Y.; Xu, H.; Zhao, Q.; Li, J. P. Hydrogen storage in several microporous zeolites. Int. J. Hydrogen Energy 2007, 32, 4998–5004.
Li, Y. W.; Yang, R. T. Hydrogen storage in low silica type X zeolites. J. Phys. Chem. B 2006, 110, 17175–17181.
Muthu, R. N.; Rajashabala, S.; Kannan, R. Hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride nanocomposite for fuel cell applications. Int. J. Hydrogen Energy 2017, 42, 15586–15596.
Rai, D. P.; Chettri, B.; Patra, P. K.; Sattar, S. Hydrogen storage in bilayer hexagonal boron nitride: A first-principles study. ACS Omega 2021, 6, 30362–30370.
Revabhai, P. M.; Singhal, R. K.; Basu, H.; Kailasa, S. K. Progress on boron nitride nanostructure materials: Properties, synthesis and applications in hydrogen storage and analytical chemistry. J. Nanostruct. Chem. 2023, 13, 1–41.
Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.
Madden, D. G.; O’Nolan, D.; Rampal, N.; Babu, R.; Çamur, C.; Al Shakhs, A. N.; Zhang, S. Y.; Rance, G. A.; Perez, J.; Casati, N. P. M. et al. Densified HKUST-1 monoliths as a route to high volumetric and gravimetric hydrogen storage capacity. J. Am. Chem. Soc. 2022, 144, 13729–13739.
Sengupta, D.; Melix, P.; Bose, S.; Duncan, J.; Wang, X. J.; Mian, M. R.; Kirlikovali, K. O.; Joodaki, F.; Islamoglu, T.; Yildirim, T. et al. Air-stable Cu(I) metal-organic framework for hydrogen storage. J. Am. Chem. Soc. 2023, 145, 20492–20502.
Suresh, K.; Aulakh, D.; Purewal, J.; Siegel, D. J.; Veenstra, M.; Matzger, A. J. Optimizing hydrogen storage in MOFs through engineering of crystal morphology and control of crystal size. J. Am. Chem. Soc. 2021, 143, 10727–10734.
Cabria, I. Grand canonical Monte Carlo simulations of the hydrogen and methane storage capacities of novel but MOFs at room temperature. Int. J. Hydrogen Energy 2024, 50, 160–177.
Yu, S. Y.; Li, S. N.; Meng, X. H.; Wan, C. B.; Ju, X. Tuning the hydrogen adsorption properties of Zn-based metal-organic frameworks: Combined DFT and GCMC simulations. J. Solid State Chem. 2018, 266, 31–36.
Ahmed, A.; Seth, S.; Purewal, J.; Wong-Foy, A. G.; Veenstra, M.; Matzger, A. J.; Siegel, D. J. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun. 2019, 10, 1568.
Veccham, S. P.; Head-Gordon, M. Density functionals for hydrogen storage: Defining the H2Bind275 test set with ab initio benchmarks and assessment of 55 functionals. J. Chem. Theory Comput. 2020, 16, 4963–4982.
Veccham, S. P.; Head-Gordon, M. Assessment of performance of density functionals for predicting potential energy curves in hydrogen storage applications. J. Phys. Chem. A 2021, 125, 4245–4257.
Liu, S. P.; Dupuis, R.; Fan, D.; Benzaria, S.; Bonneau, M.; Bhatt, P.; Eddaoudi, M.; Maurin, G. Machine learning potential for modelling H2 adsorption/diffusion in MOFs with open metal sites. Chem. Sci. 2024, 15, 5294–5302.
Barnett, B. R.; Evans, H. A.; Su, G. M.; Jiang, H. Z. H.; Chakraborty, R.; Banyeretse, D.; Hartman, T. J.; Martinez, M. B.; Trump, B. A.; Tarver, J. D. et al. Observation of an intermediate to H2 binding in a metal-organic framework. J. Am. Chem. Soc. 2021, 143, 14884–14894.
Liu, S. Y.; Zhang, Y.; Zhu, F. Z.; Liu, J. Y.; Wan, X.; Liu, R. N.; Liu, X. F.; Shang, J. X.; Yu, R. H.; Feng, Q. et al. Mg–MOF–74 derived defective framework for hydrogen storage at above-ambient temperature assisted by Pt catalyst. Adv. Sci. 2024, 11, 2401868.
Evans, H. A.; Yildirim, T.; Peng, P.; Cheng, Y. Q.; Deng, Z. Y.; Zhang, Q.; Mullangi, D.; Zhao, D.; Canepa, P.; Breunig, H. M. et al. Hydrogen storage with aluminum formate, ALF: Experimental, computational, and technoeconomic studies. J. Am. Chem. Soc. 2023, 145, 22150–22157.
Halder, A.; Klein, R. A.; Shulda, S.; McCarver, G. A.; Parilla, P. A.; Furukawa, H.; Brown, C. M.; McGuirk, C. M. Multivariate flexible framework with high usable hydrogen capacity in a reduced pressure swing process. J. Am. Chem. Soc. 2023, 145, 8033–8042.
Senkovska, I.; Bon, V.; Abylgazina, L.; Mendt, M.; Berger, J.; Kieslich, G.; Petkov, P.; Fiorio, J. L.; Joswig, J. O.; Heine, T. et al. Understanding MOF flexibility: An analysis focused on pillared layer MOFs as a model system. Angew. Chem., Int. Ed. 2023, 62, e202218076.
Wieme, J.; Lejaeghere, K.; Kresse, G.; Van Speybroeck, V. Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks. Nat. Commun. 2018, 9, 4899.
Coudert, F. X. Molecular mechanism of swing effect in zeolitic imidazolate framework ZIF-8: Continuous deformation upon adsorption. ChemPhysChem 2017, 18, 2732–2738.
Krause, S.; Evans, J. D.; Bon, V.; Senkovska, I.; Coudert, F. X.; Többens, D. M.; Wallacher, D.; Grimm, N.; Kaskel, S. The role of temperature and adsorbate on negative gas adsorption transitions of the mesoporous metal-organic framework DUT-49. Faraday Discuss 2021, 225, 168–183.
Zhang, Y. H.; Wu, S. F.; Wang, L. W.; Zhang, X. F. Chemisorption solid materials for hydrogen storage near ambient temperature: A review. Front. Energy 2023, 17, 72–101.
Bérubé, V.; Radtke, G.; Dresselhaus, M.; Chen, G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 2007, 31, 637–663.
Luo, Y.; Wang, Q.; Li, J.; Xu, F.; Sun, L.; Zou, Y.; Chu, H.; Li, B.; Zhang, K. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. Mater. Today Nano 2020, 9, 100071.
Nguyen, H. Q.; Shabani, B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Int. J. Hydrogen Energy 2021, 46, 31699–31726.
Nielsen, T. K.; Besenbacher, F.; Jensen, T. R. Nanoconfined hydrides for energy storage. Nanoscale 2011, 3, 2086–2098.
Rusman, N. A. A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126.
Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121–1140.
Schüth, F.; Bogdanović, B.; Felderhoff, M. Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. 2004, 2249–2258.
Tarasov, B. P.; Fursikov, P. V.; Volodin, A. A.; Bocharnikov, M. S.; Shimkus, Y. Y.; Kashin, A. M.; Yartys, V. A.; Chidziva, S.; Pasupathi, S.; Lototskyy, M. V. Metal hydride hydrogen storage and compression systems for energy storage technologies. Int. J. Hydrogen Energy 2021, 46, 13647–13657.
Abdin, Z.; Tang, C. G.; Liu, Y.; Catchpole, K. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 2021, 24, 102966.
Makepeace, J. W.; He, T.; Weidenthaler, C.; Jensen, T. R.; Chang, F.; Vegge, T.; Ngene, P.; Kojima, Y.; De Jongh, P. E.; Chen, P. et al. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. Int. J. Hydrogen Energy 2019, 44, 7746–7767.
Dun, C.; Jeong, S.; Kwon, D. H.; Kang, S.; Stavila, V.; Zhang, Z. L.; Lee, J. W.; Mattox, T. M.; Heo, T. W.; Wood, B. C. et al. Hydrogen storage performance of preferentially oriented Mg/rGO hybrids. Chem. Mater. 2022, 34, 2963–2971.
Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. Lithium-beryllium hydrides: The lightest reversible metal hydrides. J. Alloys Compd. 2000, 307, 157–166.
Woolf, H.; Brown, I.; Bowden, M. Light metal hydrides—Potential hydrogen storage materials. Curr. Appl. Phys. 2008, 8, 459–462.
Kawaguchi, M. Kinetic and fourier transform infrared studies on the thermal decomposition of sodium hydride. J. Phys. Chem. C 2021, 125, 11813–11819.
Jain, A.; Miyaoka, H.; Ichikawa, T. Destabilization of lithium hydride by the substitution of group 14 elements: A review. Int. J. Hydrogen Energy 2016, 41, 5969–5978.
Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Boesenberg, U.; Klassen, T.; Gutfleisch, O.; Bormann, R. Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Mater. 2007, 56, 841–846.
Zhu, M.; Wang, H.; Ouyang, L. Z.; Zeng, M. Q. Composite structure and hydrogen storage properties in Mg-base alloys. Int. J. Hydrogen Energy 2006, 31, 251–257.
Imamura, H.; Masanari, K.; Kusuhara, M.; Katsumoto, H.; Sumi, T.; Sakata, Y. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling. J. Alloys Compd. 2005, 386, 211–216.
Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A Mater. 2001, 72, 157–165.
Ponthieu, M.; Fernández, J. F.; Cuevas, F.; Bodega, J.; Ares, J. R.; Adeva, P.; Sánchez, C. Thermodynamics and reaction pathways of hydrogen sorption in Mg6(Pd, TM) (TM = Ag, Cu and Ni) pseudo-binary compounds. Int. J. Hydrogen Energy 2014, 39, 18291–18301.
Hanada, N.; Ichikawa, T.; Fujii, H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 2005, 109, 7188–7194.
Darriet, B.; Pezat, M.; Hbika, A.; Hagenmuller, P. Application of magnesium rich rare-earth alloys to hydrogen storage. Int. J. Hydrogen Energy 1980, 5, 173–178.
Bellemare, J.; Huot, J. Hydrogen storage properties of cold rolled magnesium hydrides with oxides catalysts. J. Alloys Compd. 2012, 512, 33–38.
Varin, R. A.; Czujko, T.; Chiu, C.; Wronski, Z. Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). J. Alloys Compd. 2006, 424, 356–364.
Cho, E. S.; Ruminski, A. M.; Liu, Y. S.; Shea, P. T.; Kang, S.; Zaia, E. W.; Park, J. Y.; Chuang, Y. D.; Yuk, J. M.; Zhou, X. W. et al. Hierarchically controlled inside-out doping of Mg nanocomposites for moderate temperature hydrogen storage. Adv. Funct. Mater. 2017, 27, 1704316.
Ruminski, A. M.; Bardhan, R.; Brand, A.; Aloni, S.; Urban, J. J. Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions. Energy Environ. Sci. 2013, 6, 3267–3271.
Jeon, K. J.; Moon, H. R.; Ruminski, A. M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J. J. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 2011, 10, 286–290.
Jeong, S.; Heo, T. W.; Oktawiec, J.; Shi, R. P.; Kang, S.; White, J. L.; Schneemann, A.; Zaia, E. W.; Wan, L. F.; Ray, K. G. et al. A mechanistic analysis of phase evolution and hydrogen storage behavior in nanocrystalline Mg(BH4)2 within reduced graphene oxide. ACS Nano 2020, 14, 1745–1756.
Wan, L. F.; Liu, Y. S.; Cho, E. S.; Forster, J. D.; Jeong, S.; Wang, H. T.; Urban, J. J.; Guo, J. H.; Prendergast, D. Atomically thin interfacial suboxide key to hydrogen storage performance enhancements of magnesium nanoparticles encapsulated in reduced graphene oxide. Nano Lett. 2017, 17, 5540–5545.
Wan, L. F.; Cho, E. S.; Marangoni, T.; Shea, P.; Kang, S.; Rogers, C.; Zaia, E.; Cloke, R. R.; Wood, B. C.; Fischer, F. R. et al. Edge-functionalized graphene nanoribbon encapsulation to enhance stability and control kinetics of hydrogen storage materials. Chem. Mater. 2019, 31, 2960–2970.
Zhang, Z. L.; Su, J.; Matias, A. S.; Gordon, M.; Liu, Y. S.; Guo, J. H.; Song, C. Y.; Dun, C. C.; Prendergast, D.; Somorjai, G. A. et al. Enhanced and stabilized hydrogen production from methanol by ultrasmall Ni nanoclusters immobilized on defect-rich h-BN nanosheets. Proc. Natl. Acad. Sci. USA 2020, 117, 29442–29452.
Cho, E. S.; Ruminski, A. M.; Aloni, S.; Liu, Y. S.; Guo, J. H.; Urban, J. J. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat. Commun. 2016, 7, 10804.
Seayad, A. M.; Antonelli, D. M. Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Adv. Mater. 2004, 16, 765–777.
Zhao, L.; Xu, F.; Zhang, C. C.; Wang, Z. Y.; Ju, H. Y.; Gao, X.; Zhang, X. X.; Sun, L. X.; Liu, Z. W. Enhanced hydrogen storage of alanates: Recent progress and future perspectives. Prog. Nat. Sci.: Mater. Int. 2021, 31, 165–179.
Kang, S.; Heo, T. W.; Allendorf, M. D.; Wood, B. C. Morphology-dependent stability of complex metal hydrides and their intermediates using first-principles calculations. ChemPhysChem 2019, 20, 1340–1347.
Dun, C.; Li, S. C.; Chen, L. F.; Horton, R. D.; Allendorf, M. D.; Wood, B. C.; Stavila, V.; Urban, J. J. A nanoscale ternary amide-rGO composite with boosted kinetics for reversible H2 storage. Adv. Mater. Interfaces 2023, 10, 2300310.
Stavila, V.; Li, S. C.; Dun, C.; Marple, M. A. T.; Mason, H. E.; Snider, J. L.; Reynolds, J. E.; El Gabaly, F.; Sugar, J. D.; Spataru, C. D. et al. Defying thermodynamics: Stabilization of alane within covalent triazine frameworks for reversible hydrogen storage. Angew. Chem., Int. Ed. 2021, 60, 25815–25824.
Gunda, H.; Ray, K. G.; Klebanoff, L. E.; Dun, C. C.; Marple, M. A. T.; Li, S. C.; Sharma, P.; Friddle, R. W.; Sugar, J. D.; Snider, J. L. et al. Hydrogen storage in partially exfoliated magnesium diboride multilayers. Small 2023, 19, 2250487.
Zhang, J. Y.; Wang, W. D.; Chen, X. W.; Jin, J. L.; Yan, X. J.; Huang, J. M. Single-atom Ni supported on TiO2 for catalyzing hydrogen storage in MgH2. J. Am. Chem. Soc. 2024, 146, 10432–10442.
Batalović, K.; Radaković, J.; Kuzmanović, B.; Ilić, M. M.; Mamula, B. P. Machine learning-based high-throughput screening of Mg-containing alloys for hydrogen storage and energy conversion applications. J. Energy Storage 2023, 68, 107720.
Hattrick-Simpers, J. R.; Choudhary, K.; Corgnale, C. A simple constrained machine learning model for predicting high-pressure-hydrogen-compressor materials. Mol. Syst. Des. Eng. 2018, 3, 509–517.
Suwarno, S.; Dicky, G.; Suyuthi, A.; Effendi, M.; Witantyo, W.; Noerochim, L.; Ismail, M. Machine learning analysis of alloying element effects on hydrogen storage properties of AB2 metal hydrides. Int. J. Hydrogen Energy 2022, 47, 11938–11947.
Li, Q.; Lin, X.; Luo, Q.; Chen, Y. A.; Wang, J. F.; Jiang, B.; Pan, F. S. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. Int. J. Miner. Metall. Mater. 2022, 29, 32–48.
Liu, Y. F.; Guo, Y. S.; Jiang, Y. R.; Feng, L. Z.; Sun, Y.; Wang, Y. J. Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials. Mater. Rep. Energy 2024, 4, 100252.
Balcerzak, M.; Ponsoni, J. B.; Petersen, H.; Menéndez, C.; Ternieden, J.; Zhang, L. D.; Winkelmann, F.; Aguey-Zinsou, K. F.; Hirscher, M.; Felderhoff, M. Hydrogen-stabilized ScYNdGd medium-entropy alloy for hydrogen storage. J. Am. Chem. Soc. 2024, 146, 5283–5294.
Kostiuchenko, T.; Körmann, F.; Neugebauer, J.; Shapeev, A. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. npj Comput. Mater. 2019, 5, 55.
Witman, M.; Ek, G.; Ling, S. L.; Chames, J.; Agarwal, S.; Wong, J.; Allendorf, M. D.; Sahlberg, M.; Stavila, V. Data-driven discovery and synthesis of high entropy alloy hydrides with targeted thermodynamic stability. Chem. Mater. 2021, 33, 4067–4076.
Moosavi, S. M.; Jablonka, K. M.; Smit, B. The role of machine learning in the understanding and design of materials. J. Am. Chem. Soc. 2020, 142, 20273–20287.
Jablonka, K. M.; Ongari, D.; Moosavi, S. M.; Smit, B. Using collective knowledge to assign oxidation states of metal cations in metal-organic frameworks. Nat. Chem. 2021, 13, 771–777.
Moosavi, S. M.; Novotny, B. Á.; Ongari, D.; Moubarak, E.; Asgari, M.; Kadioglu, Ö.; Charalambous, C.; Ortega-Guerrero, A.; Farmahini, A. H.; Sarkisov, L. et al. A data-science approach to predict the heat capacity of nanoporous materials. Nat. Mater. 2022, 21, 1419–1425.
Liu, S. Y.; Liu, J. Y.; Liu, X. F.; Shang, J. X.; Xu, L.; Yu, R. H.; Shui, J. L. Hydrogen storage in incompletely etched multilayer Ti2CT x at room temperature. Nat. Nanotechnol. 2021, 16, 331–336.
Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919.
Peng, P.; Anastasopoulou, A.; Brooks, K.; Furukawa, H.; Bowden, M. E.; Long, J. R.; Autrey, T.; Breunig, H. Cost and potential of metal-organic frameworks for hydrogen back-up power supply. Nat. Energy 2022, 7, 448–458.
Ahluwalia, R. K.; Peng, J. K.; Hua, T. Q. Sorbent material property requirements for on-board hydrogen storage for automotive fuel cell systems. Int. J. Hydrogen Energy 2015, 40, 6373–6390.
Nguyen, D. H.; Kim, J. H.; Vo, T. T. N.; Kim, N.; Ahn, H. S. Design of portable hydrogen tank using adsorption material as storage media: An alternative to Type IV compressed tank. Appl. Energy 2022, 310, 118552.
Grady, C.; McWhorter, S.; Sulic, M.; Sprik, S. J.; Thornton, M. J.; Brooks, K. P.; Tamburello, D. A. Design tool for estimating adsorbent hydrogen storage system characteristics for light-duty fuel cell vehicles. Int. J. Hydrogen Energy 2022, 47, 29847–29857.
Brooks, K. P.; Sprik, S. J.; Tamburello, D. A.; Thornton, M. J. Design tool for estimating metal hydride storage system characteristics for light-duty hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2020, 45, 24917–24927.
Anastasopoulou, A.; Furukawa, H.; Barnett, B. R.; Jiang, H. Z. H.; Long, J. R.; Breunig, H. M. Technoeconomic analysis of metal-organic frameworks for bulk hydrogen transportation. Energy Environ. Sci. 2021, 14, 1083–1094.
Pasini, J. M.; Corgnale, C.; Van Hassel, B. A.; Motyka, T.; Kumar, S.; Simmons, K. L. Metal hydride material requirements for automotive hydrogen storage systems. Int. J. Hydrogen Energy 2013, 38, 9755–9765.
Klopčič, N.; Grimmer, I.; Winkler, F.; Sartory, M.; Trattner, A. A review on metal hydride materials for hydrogen storage. J. Energy Storage 2023, 72, 108456.
Van Hassel, B. A.; Mosher, D.; Pasini, J. M.; Gorbounov, M.; Holowczak, J.; Tang, X.; Brown, R.; Laube, B.; Pryor, L. Engineering improvement of NaAlH4 system. Int. J. Hydrogen Energy 2012, 37, 2756–2766.
Amica, G.; Larochette, P. A.; Gennari, F. C. Light metal hydride-based hydrogen storage system: Economic assessment in Argentina. Int. J. Hydrogen Energy 2020, 45, 18789–18801.
Zhang, B.; Wu, Y. Recent advances in improving performances of the lightweight complex hydrides Li–Mg–N–H system. Prog. Nat. Sci.: Mater. Int. 2017, 27, 21–33.
Xu, Z.; Zhao, N.; Hillmansen, S.; Roberts, C.; Yan, Y. Techno-economic analysis of hydrogen storage technologies for railway engineering: A review. Energies 2022, 15, 6467.
Lapeña-Rey, N.; Blanco, J. A.; Ferreyra, E.; Lemus, J. L.; Pereira, S.; Serrot, E. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions. Int. J. Hydrogen Energy 2017, 42, 6926–6940.
Psoma, A.; Sattler, G. Fuel cell systems for submarines: From the first idea to serial production. J. Power Sources 2002, 106, 381–383.
Fiori, C.; Dell’Era, A.; Zuccari, F.; Santiangeli, A.; D’Orazio, A.; Orecchini, F. Hydrides for submarine applications: Overview and identification of optimal alloys for air independent propulsion maximization. Int. J. Hydrogen Energy 2015, 40, 11879–11889.
Danebergs, J.; Deledda, S. Can hydrogen storage in metal hydrides be economically competitive with compressed and liquid hydrogen storage? A techno-economical perspective for the maritime sector. Int. J. Hydrogen Energy 2024, 50, 1040–1054.
Drawer, C.; Lange, J.; Kaltschmitt, M. Metal hydrides for hydrogen storage-identification and evaluation of stationary and transportation applications. J. Energy Storage 2024, 77, 109988.
DeSantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy Fuels 2017, 31, 2024–2032.
Luo, H. X.; Cheng, F. W.; Huelsenbeck, L.; Smith, N. Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: Life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage. J. Environ. Chem. Eng. 2021, 9, 105159.
Modi, P.; Aguey-Zinsou, K. F. Room temperature metal hydrides for stationary and heat storage applications: A review. Front. Energy Res. 2021, 9, 616115.
Hancke, R.; Holm, T.; Ulleberg, Ø. The case for high-pressure PEM water electrolysis. Energy Convers. Manage. 2022, 261, 115642.
Von Colbe, J. B.; Ares, J. R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D. M.; Guzik, M. N.; Jacob, I. et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808.
Ye, Y.; Lu, J. F.; Ding, J.; Wang, W. L.; Yan, J. Y. Performance improvement of metal hydride hydrogen storage tanks by using phase change materials. Appl. Energy 2022, 320, 119290.
Mellouli, S.; Abhilash, E.; Askri, F.; Ben Nasrallah, S. Integration of thermal energy storage unit in a metal hydride hydrogen storage tank. Appl. Therm. Eng. 2016, 102, 1185–1196.
Garrier, S.; Delhomme, B.; De Rango, P.; Marty, P.; Fruchart, D.; Miraglia, S. A new MgH2 tank concept using a phase-change material to store the heat of reaction. Int. J. Hydrogen Energy 2013, 38, 9766–9771.
Hahne, E.; Kallweit, J. Thermal conductivity of metal hydride materials for storage of hydrogen: Experimental investigation. Int. J. Hydrogen Energy 1998, 23, 107–114.
Wilmer, C. E.; Snurr, R. Q. Large-scale generation and screening of hypothetical metal-organic frameworks for applications in gas storage and separations. In Prediction and Calculation of Crystal Structures: Methods and Applications. Atahan-Evrenk, S.; Aspuru-Guzik, A., Eds.; Springer: Cham, 2014; pp 257–289.
Kim, S. Y.; Kim, S. I.; Bae, Y. S. Machine-learning-based prediction of methane adsorption isotherms at varied temperatures for experimental adsorbents. J. Phys. Chem. C 2020, 124, 19538–19547.
Chong, S.; Lee, S.; Kim, B.; Kim, J. Applications of machine learning in metal-organic frameworks. Coord. Chem. Rev. 2020, 423, 213487.
Demir, H.; Daglar, H.; Gulbalkan, H. C.; Aksu, G. O.; Keskin, S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord. Chem. Rev. 2023, 484, 215112.
Lu, X. Y.; Xie, Z. Z.; Wu, X. J.; Li, M. M.; Cai, W. Q. Hydrogen storage metal-organic framework classification models based on crystal graph convolutional neural networks. Chem. Eng. Sci. 2022, 259, 117813.
Rahnama, A.; Zepon, G.; Sridhar, S. Machine learning based prediction of metal hydrides for hydrogen storage, part I: Prediction of hydrogen weight percent. Int. J. Hydrogen Energy 2019, 44, 7337–7344.
Witman, M.; Ling, S. L.; Grant, D. M.; Walker, G. S.; Agarwal, S.; Stavila, V.; Allendorf, M. D. Extracting an empirical intermetallic hydride design principle from limited data via interpretable machine learning. J. Phys. Chem. Lett 2020, 11, 40–47.
Ahmed, A.; Siegel, D. J. Predicting hydrogen storage in MOFs via machine learning. Patterns 2021, 2, 100291.
Broom, D. P.; Hirscher, M. Irreproducibility in hydrogen storage material research. Energy Environ. Sci. 2016, 9, 3368–3380.
Barale, J.; Dematteis, E. M.; Capurso, G.; Neuman, B.; Deledda, S.; Rizzi, P.; Cuevas, F.; Baricco, M. TiFe0.85Mn0.05 alloy produced at industrial level for a hydrogen storage plant. Int. J. Hydrogen Energy 2022, 47, 29866–29880.
Chung, Y. G.; Haldoupis, E.; Bucior, B. J.; Haranczyk, M.; Lee, S.; Zhang, H. D.; Vogiatzis, K. D.; Milisavljevic, M.; Ling, S. L.; Camp, J. S. et al. Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019. J. Chem. Eng. Data 2019, 64, 5985–5998.
Li, Q.; Lu, Y. F.; Luo, Q.; Yang, X. H.; Yang, Y.; Tan, J.; Dong, Z. H.; Dang, J.; Li, J. B.; Chen, Y. et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloys 2021, 9, 1922–1941.