AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

sp2 to sp3 hybridization transformation in 2D metal-semiconductor contact interface suppresses tunneling barrier and Fermi level pinning simultaneously

Wenchao Shan1Anqi Shi1Zhuorong Zhong1Xiuyun Zhang2Bing Wang3( )Yongtao Li1( )Xianghong Niu1,4( )
School of Science, State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng 475004, China
Key Laboratory of Quantum Materials and Devices (Southeast University), Ministry of Education, Nanjing 211189, China
Show Author Information

Graphical Abstract

Abstract

Van der Waals (vdWs) stacking of two-dimensional (2D) materials can effectively weaken the Fermi level pinning (FLP) effect in metal/semiconductor contacts due to dangling-bond-free surfaces. However, the inherent vdWs gap always induces a considerable tunneling barrier, significantly limiting carrier injection. Herein, by inducing a sp2 to sp3 hybridization transformation in 2D carbon-based metal via surface defect engineering, the large orbital overlap can form an efficient carrier channel, overcoming the tunneling barrier. Specifically, by selecting the 2D carbon-based X3C2 (X = Cd, Hg, and Zn) metal and the 2D MSi2N4 (M = Cr, Hf, Mo, Ti, V, and Zr) semiconductor, we constructed 36 metal/semiconductor contacts. For vdWs contacts, although Ohmic contacts can be formed at the interface, the highest tunneling probability (PTB) is only 3.11%. As expected, the PTB can be significantly improved, as high as 48.73%, when MSi2N4, accompanied by surface nitrogen vacancies, forms an interface covalent bond with X3C2. Simultaneously, weak FLP and Ohmic contact remain at the covalent-bond-based surface, attributing to the protection of the MSi2N4 band-edge electronic states by the outlying Si-N sublayer. Our work provides a promising path for advancing the progress of 2D electronic and photoelectronic devices.

Electronic Supplementary Material

Download File(s)
6877_ESM.pdf (2.3 MB)

References

[1]

Popov, I.; Seifert, G.; Tománek, D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.

[2]

Durán Retamal, J. R.; Periyanagounder, D.; Ke, J. J.; Tsai, M. L.; He, J. H. Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chem. Sci. 2018, 9, 7727–7745.

[3]

Jiang, B.; Yang, Z. Y.; Liu, X. Q.; Liu, Y.; Liao, L. Interface engineering for two-dimensional semiconductor transistors. Nano Today 2019, 25, 122–134.

[4]

Liu, X. C.; Choi, M. S.; Hwang, E.; Yoo, W. J.; Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater. 2022, 34, 2108425.

[5]

Yang, Z.; Kim, C.; Lee, K. Y.; Lee, M.; Appalakondaiah, S.; Ra, C. H.; Watanabe, K.; Taniguchi, T.; Cho, K.; Hwang, E. et al. A fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2-metal junction. Adv. Mater. 2019, 31, 1808231.

[6]

Chen, R. S.; Ding, G. L.; Feng, Z. H.; Zhang, S. R.; Mo, W. A.; Han, S. T.; Zhou, Y. MoS2 transistor with weak fermi level pinning via MXene contacts. Adv. Funct. Mater. 2022, 32, 2204288.

[7]

Murali, K.; Dandu, M.; Watanabe, K.; Taniguchi, T.; Majumdar, K. Accurate extraction of schottky barrier height and universality of fermi level de-pinning of van der waals contacts. Adv. Funct. Mater. 2021, 31, 2010513.

[8]

Kim, G. S.; Kim, S. H.; Park, J.; Han, K. H.; Kim, J.; Yu, H. Y. Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal-induced gap states. ACS Nano 2018, 12, 6292–6300.

[9]

Wang, X. L.; Hu, Y. Q.; Kim, S. Y.; Addou, R.; Cho, K.; Wallace, R. M. Origins of fermi level pinning for Ni and Ag metal contacts on tungsten dichalcogenides. ACS Nano 2023, 17, 20353–20365.

[10]

Wu, Z. L.; Zhu, Y. H.; Wang, F.; Ding, C. Y.; Wang, Y. R.; Zhan, X. Y.; He, J.; Wang, Z. X. Lowering contact resistances of two-dimensional semiconductors by memristive forming. Nano Lett. 2022, 22, 7094–7103.

[11]

Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.

[12]

Sotthewes, K.; van Bremen, R.; Dollekamp, E.; Boulogne, T.; Nowakowski, K.; Kas, D.; Zandvliet, H. J. W.; Bampoulis, P. Universal fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 2019, 123, 5411–5420.

[13]

Kobayashi, M.; Kinoshita, A.; Saraswat, K.; Wong, H. S. P.; Nishi, Y. Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application. J. Appl. Phys. 2009, 105, 023702.

[14]

Lee, S. Y.; Yun, W. S.; Lee, J. D. New method to determine the schottky barrier in few-layer black phosphorus metal contacts. ACS Appl. Mater. Interfaces 2017, 9, 7873–7877.

[15]

Tung, R. T. Chemical bonding and fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078–6081.

[16]

Cowley, A. M.; Sze, S. M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 1965, 36, 3212–3220.

[17]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[18]

Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

[19]

Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800.

[20]

Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

[21]

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

[22]

Ai, W.; Shi, Y. F.; Hu, X. H.; Yang, J.; Sun, L. T. Tunable Schottky barrier and efficient Ohmic contacts in MSi2N4 (M = Mo, W)/2D metal contacts. ACS Appl. Electron. Mater. 2023, 5, 5606–5613.

[23]

Zhang, X.; Zheng, J. Y.; Xiang, Y. C.; Wu, D.; Fan, J.; Sun, Y. Y.; Chen, L. J.; Gan, L. Y.; Zhou, X. Y. Ohmic contacts in MXene/MoSi2N4 heterojunctions. Appl. Phys. Lett. 2023, 123, 023505.

[24]

Li, Z. H.; Han, J. N.; Cao, S. G.; Zhang, Z. H. Graphene/MoSi2X4: A class of van der Waals heterojunctions with unique mechanical and optical properties and controllable electrical contacts. Appl. Surf. Sci. 2023, 614, 156095.

[25]

Tho, C. C.; Yu, C. J.; Tang, Q.; Wang, Q. Q.; Su, T.; Feng, Z. E.; Wu, Q. Y.; Nguyen, C. V.; Ong, W. L.; Liang, S. J. et al. Cataloguing MoSi2N4 and WSi2N4 van der Waals heterostructures: An exceptional material platform for excitonic solar cell applications. Adv. Mater. Interfaces 2023, 10, 2201856.

[26]

Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 369, 670–674.

[27]

Wang, L.; Shi, Y. P.; Liu, M. F.; Zhang, A.; Hong, Y. L.; Li, R. H.; Gao, Q.; Chen, M. X.; Ren, W. C.; Cheng, H. M. et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun. 2021, 12, 2361.

[28]

Liu, Z. B.; Wang, L.; Hong, Y. L.; Chen, X. Q.; Cheng, H. M.; Ren, W. C. Two-dimensional superconducting MoSi2N4(MoN)4 n homologous compounds. Natl. Sci. Rev. 2023, 10, nwac273.

[29]

Liu, B. Dual single-site catalyst promoter boosts catalytic performance. Natl. Sci. Rev. 2020, 7, 1841–1842.

[30]

Liu, Y. B.; Zhang, T.; Dou, K. Y.; Du, W. H.; Peng, R.; Dai, Y.; Huang, B. B.; Ma, Y. D. Valley-contrasting physics in single-layer CrSi2N4 and CrSi2P4. J. Phys. Chem. Lett. 2021, 12, 8341–8346.

[31]

Nguyen, C. V.; Nguyen, C. Q.; Nguyen, S. T.; Ang, Y. S.; Hieu, N. V. Two-dimensional metal/semiconductor contact in a janus MoSH/MoSi2N4 van der Waals heterostructure. J. Phys. Chem. Lett. 2022, 13, 2576–2582.

[32]

Zhao, J. F.; Zhao, Y. L.; He, H. J.; Zhou, P. W.; Liang, Y.; Frauenheim, T. Stacking engineering: A boosting strategy for 2D photocatalysts. J. Phys. Chem. Lett. 2021, 12, 10190–10196.

[33]

Li, S.; Wu, W. K.; Feng, X. L.; Guan, S.; Feng, W. X.; Yao, Y. G.; Yang, S. A. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys. Rev. B 2020, 102, 235435.

[34]

Yuan, J. R.; Wei, Q. Y.; Sun, M. L.; Yan, X. H.; Cai, Y. Q.; Shen, L.; Schwingenschlögl, U. Protected valley states and generation of valley- and spin-polarized current in monolayer MA2Z4. Phys. Rev. B 2022, 105, 195151.

[35]

Yin, Y.; Gong, Q. H.; Yi, M.; Guo, W. L. Emerging versatile two-dimensional MoSi2N4 family. Adv. Funct. Mater. 2023, 33, 2214050.

[36]

Wang, Q. Q.; Cao, L. M.; Liang, S. J.; Wu, W. K.; Wang, G. Z.; Lee, C. H.; Ong, W. L.; Yang, H. Y.; Ang, L. K.; Yang, S. A. et al. Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. npj 2D Mater. Appl. 2021, 5, 71.

[37]

Liu, P. F.; Zhou, L. J.; Frauenheim, T.; Wu, L. M. A graphene-like Mg3N2 monolayer: High stability, desirable direct band gap and promising carrier mobility. Phys. Chem. Chem. Phys. 2016, 18, 30379–30384.

[38]

Shao, Y. F.; Wang, Q.; Pan, H.; Shi, X. Q. Van der Waals contact to 2D semiconductors with a switchable electric dipole: Achieving both n- and p-type Ohmic contacts to metals with a wide range of work functions. Adv. Electron. Mater. 2020, 6, 1900981.

[39]

Zhong, K. H.; Li, J. X.; Xu, G. G.; Yang, Y. M.; Zhang, J. M.; Huang, Z. G. Contacts between monolayer black phosphorene and metal electrodes: Ohmic, Schottky, and their regulating strategy. J. Appl. Phys. 2021, 130, 124305.

[40]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[41]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[42]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[43]

Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.

[44]

Waldron, D.; Haney, P.; Larade, B.; MacDonald, A.; Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 2006, 96, 166804.

[45]

Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.

[46]

Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device. Phys. Rev. B 2001, 63, 121104.

[47]

Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.

[48]

Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

[49]

Zhang, X. K.; Yu, H. H.; Tang, W. H.; Wei, X. F.; Gao, L.; Hong, M. Y.; Liao, Q. L.; Kang, Z.; Zhang, Z.; Zhang, Y. All-van-der-Waals barrier-free contacts for high-mobility transistors. Adv. Mater. 2022, 34, 2109521.

[50]

Wei, X. R.; Zhang, M. J.; Zhang, X. D.; Lin, Y. M.; Jiang, Z. Y.; Du, A. J. Efficient modulation of Schottky to Ohmic contact in MoSi2N4/M3C2 (M = Zn, Cd, Hg) van der Waals heterostructures. J. Phys. Chem. Lett. 2024, 15, 3871–3883.

[51]

Mortazavi, B.; Javvaji, B.; Shojaei, F.; Rabczuk, T.; Shapeev, A. V.; Zhuang, X. Y. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 2021, 82, 105716.

[52]

Chen, R.; Wang, Y. F.; Qian, G. L.; Liang, Q.; Luo, X. Y.; Xie, Q. Monolayers of germanene/janus Ga2SeTe van der Waals heterostructures by first-principles calculations for high-performance optoelectronic devices. ACS Appl. Nano Mater. 2023, 6, 3453–3462.

[53]

Vu, T. V.; Hieu, N. V.; Phuc, H. V.; Hieu, N. N.; Bui, H. D.; Idrees, M.; Amin, B.; Nguyen, C. V. Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Appl. Surf. Sci. 2020, 507, 145036.

[54]

Zheng, Y.; Gao, J.; Han, C.; Chen, W. Ohmic contact engineering for two-dimensional materials. Cell Rep. Phys. Sci. 2021, 2, 100298.

[55]

Qu, H. Z.; Guo, S. Y.; Zhou, W. H.; Wu, Z. H.; Cao, J.; Li, Z.; Zeng, H. B.; Zhang, S. L. Enhanced interband tunneling in two-dimensional tunneling transistors through anisotropic energy dispersion. Phys. Rev. B 2022, 105, 075413.

[56]

Wang, Y. Y.; Yang, R. X.; Quhe, R.; Zhong, H. X.; Cong, L.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type ohmic contact exist in WSe2-metal interfaces. Nanoscale 2016, 8, 1179–1191.

[57]

Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940.

[58]

Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

Nano Research
Cite this article:
Shan W, Shi A, Zhong Z, et al. sp2 to sp3 hybridization transformation in 2D metal-semiconductor contact interface suppresses tunneling barrier and Fermi level pinning simultaneously. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6877-x
Topics:
Part of a topical collection:

146

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 May 2024
Revised: 25 June 2024
Accepted: 10 July 2024
Published: 01 August 2024
© Tsinghua University Press 2024
Return