Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Anomalous thermal expansion, or other words, negative thermal expansion (NTE), resulting from the lattice contraction upon temperature increasing, has been an enduring topic for material science and engineering. The variation of a lattice go with the temperature is straightly originated from its electronic structures and is inseparable from those physical properties. In the past several decades, many efforts have been made to searching new series of NTE compounds or control the thermal expansion performance in order to supply various demands of different extreme applications. These development of new NTE systems also dependences on the theoretical studies. Here, we carried out theoretical calculation on CrB2 and FeZr2 with anisotropic negative thermal expansion. Intriguingly, theoretical calculations reveal that the binding of either Cr-Cr pair or Fe-Fe pair is relatively small. The results reveal that the origin of NTE is the ordered magnetic state during the increasing of temperature. The localized electrons would prevent the lattice parameters increase with heating, which shows macroscopic NTE phenomenon.
Li, Q.; Lin, K.; Liu, Z. N.; Hu, L.; Cao, Y. L.; Chen, J.; Xing, X. R. Chemical diversity for tailoring negative thermal expansion. Chem. Rev. 2022, 122, 8438–8486.
Chen, J.; Nittala, K.; Forrester, J. S.; Jones, J. L.; Deng, J. X.; Yu, R. B.; Xing, X. R. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds. J. Am. Chem. Soc. 2011, 133, 11114–11117.
Li, W. J.; Lin, K.; Yan, Y.; Yu, C. Y.; Cao, Y. L.; Chen, X.; Wang, C. W.; Kato, K.; Chen, Y.; An, K. et al. A seawater-corrosion-resistant and isotropic zero thermal expansion (Zr,Ta)(Fe,Co)2 alloy. Adv. Mater. 2022, 34, 2109592.
Cao, Y. L.; Lin, K.; Khmelevskyi, S.; Avdeev, M.; Taddei, K. M.; Zhang, Q.; Huang, Q. Z.; Li, Q.; Kato, K.; Tang, C. C. et al. Ultrawide temperature range super-invar behavior of R2(Fe, Co)17 materials ( R = rare earth). Phys. Rev. Lett. 2021, 127, 055501.
Yu, C. Y.; Lin, K.; Jiang, S. H.; Cao, Y. L.; Li, W. J.; Wang, Y. L.; Chen, Y.; An, K.; You, L.; Kato, K. et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite. Nat. Commun. 2021, 12, 4701.
Chen, J.; Hu, L.; Deng, J. X.; Xing, X. R. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 2015, 44, 3522–3567.
Huang, R. J.; Liu, Y. Y.; Fan, W.; Tan, J.; Xiao, F. R.; Qian, L. H.; Li, L. F. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472.
Song, X. Y.; Sun, Z. H.; Huang, Q. Z.; Rettenmayr, M.; Liu, X. M.; Seyring, M.; Li, G. N.; Rao, G. H.; Yin, F. X. Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 2011, 23, 4690–4694.
Armitage, N. P.; Mele, E. J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001.
Khmelevskyi, S.; Turek, I.; Mohn, P. Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the invar effect. Phys. Rev. Lett. 2003, 91, 037201.
Guo, X. J.; Gao, Z. L.; Tao, X. T. Recent advances in tellurite molybdate/tungstate crystals. CrystEngComm 2022, 24, 7516–7529.
Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Structures of metal-organic frameworks with rod secondary building units. Chem. Rev. 2016, 116, 12466–12535.
Tan, Z. J.; Miao, P.; Hagihala, M.; Lee, S.; Ishikawa, Y.; Torii, S.; Yonemura, M.; Saito, T.; Deng, S. H.; Chen, J. et al. Room temperature zero thermal expansion in a cubic cobaltite. J. Phys. Chem. Lett. 2020, 11, 6785–6790.
Huang, Q.; Santoro, A.; Lynn, J. W.; Erwin, R. W.; Borchers, J. A.; Peng, J. L.; Ghosh, K.; Greene, R. L. Structure and magnetic order in La1− x Ca x MnO3 (0 < x < ~ 0.33). Phys. Rev. B 1998, 58, 2684–2691.
Wang, L.; Wang, C.; Sun, Y.; Shi, K. W.; Deng, S. H.; Lu, H. Q.; Hu, P. W.; Zhang, X. Y. Metal fluorides, a new family of negative thermal expansion materials. J. Materiomics 2015, 1, 106–112.
Takenaka, K.; Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 2005, 87, 261902.
Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.
Jovanovic, M.; Schoop, L. M. Simple chemical rules for predicting band structures of Kagome materials. J. Am. Chem. Soc. 2022, 144, 10978–10991.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.
Sun, Y. M.; Cao, Y. L.; Hu, S. X.; Avdeev, M.; Wang, C. W.; Khmelevskyi, S.; Ren, Y.; Lapidus, S. H.; Chen, X.; Li, Q. et al. Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in Kagome cubic intermetallic (Zr,Nb)Fe2. J. Am. Chem. Soc. 2023, 145, 17096–17102.
Xu, Y.; Chen, X.; Cao, Y. L.; Lin, K.; Wang, C. W.; Li, Q.; Deng, J. X.; Miao, J.; Xing, X. R. Neutron diffraction study on anomalous thermal expansion of CrB2. Chin. J. Struct. Chem. 2023, 42, 100009.
Xu, M.; Li, Q.; Song, Y. Z.; Xu, Y. J.; Sanson, A.; Shi, N. K.; Wang, N.; Sun, Q.; Wang, C. T.; Chen, X. et al. Giant uniaxial negative thermal expansion in FeZr2 alloy over a wide temperature range. Nat. Commun. 2023, 14, 4439.