AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Polysulfides adsorption and catalysis dual-sites on metal-doped molybdenum oxide nanoclusters for Li-S batteries with wide operating temperature

Jieshuangyang Chen1,§Jie Lei2,§Jinwei Zhou1Xuanfeng Chen1Rongyu Deng1Mingzhi Qian1Ya Chen1( )Feixiang Wu1( )
School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, China
College of Materials Science and Engineering, Institute of New Energy Materials and Engineering, Fuzhou University, Fuzhou 350108, China

§ Jieshuangyang Chen and Jie Lei contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The development of electrocatalysts with high catalytic activity is conducive to enhancing polysulfides adsorption and reducing activation energy of polysulfides conversion, which can effectively reduce polysulfide shuttling in Li-S batteries. Herein, a novel catalyst NiCo-MoOx/rGO (rGO = reduced graphene oxides) with ultra-nanometer scale and high dispersity is derived from the Anderson-type polyoxometalate precursors, which are electrostatically assembled on the multilayer rGO. The catalyst material possesses dual active sites, in which Ni-doped MoOx exhibits strong polysulfide anchoring ability, while Co-doped MoOx facilitates the polysulfides conversion reaction kinetics, thus breaking the Sabatier effect in the conventional electrocatalytic process. In addition, the prepared NiCo-MoOx/rGO modified PP separator (NiCo-MoOx/rGO@PP) can serve as a physical barrier to further inhibit the polysulfide shuttling effect and realize the rapid Li+ migration. The results demonstrate that Li-S coin cell with NiCo-MoOx/rGO@PP separator shows excellent cycling performance with the discharge capacity of 680 mAh·g−1 after 600 cycles at 1 C and the capacity fading of 0.064% per cycle. The rate performance is also impressive with the remained capacity of 640 mAh·g−1 after 200 cycles even at 4 C. When the sulfur loading is 4.0 mg·cm−2 and electrolyte volume/sulfur mass ratio (E/S) ratio is 6.0 μL·mg−1, a specific capacity of 830 mAh·g−1 is achieved after 200 cycles with a capacity decay of 0.049% per cycle. More importantly, the cell with NiCo-MoOx/rGO@PP separator exhibits cycling performance under wide operating temperature with the reversible capacities of 518, 715, and 915 mAh·g−1 after 100 cycles at −20, 0, and 60 °C, respectively. This study provides a new design approach of highly efficient catalysts for sulfur conversion reaction in Li-S batteries.

Electronic Supplementary Material

Download File(s)
6879_ESM.pdf (4.7 MB)

References

[1]

Ren, Y. L.; Chang, S. Z.; Hu, L. B.; Wang, B.; Sun, D. Y.; Wu, H.; Ma, Y. J.; Yang, Y. R.; Tang, S. C.; Meng, X. K. A bidirectional electrocatalyst for enhancing Li2S nucleation and decomposition kinetics in lithium-sulfur batteries. J. Mater. Chem. A 2022, 10, 17532–17543.

[2]

Li, Y. N.; Deng, Y. R.; Yang, J. L.; Tang, W. H.; Ge, B.; Liu, R. P. Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium-sulfur battery. Adv. Funct. Mater. 2023, 33, 2302267.

[3]

Deng, R. Y.; Chu, F. L.; Kwofie, K.; Guan, Z. Q.; Chen, J. S. Y.; Wu, F. X. A low-concentration electrolyte for high-voltage lithium-metal batteries: Fluorinated solvation shell and low salt concentration effect. Angew. Chem., Int. Ed. 2022, 134, e202215866.

[4]

Wang, N. N.; Zhang, X.; Ju, Z. Y.; Yu, X. W.; Wang, Y. X.; Du, Y.; Bai, Z. C.; Dou, S. X.; Yu, G. H. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 2021, 12, 4519.

[5]

Zou, K. Y.; Chen, X. X.; Jing, W. T.; Dai, X.; Wang, P. F.; Liu, Y.; Qiao, R.; Shi, M.; Chen, Y. Z.; Sun, J. J. et al. Facilitating catalytic activity of indium oxide in lithium-sulfur batteries by controlling oxygen vacancies. Energy Storage Mater. 2022, 48, 133–144.

[6]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[7]

Yang, L. B.; Wang, X. W.; Cheng, X. M.; Zhang, Y. Z.; Ma, C.; Zhang, Y. Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Regulating Fe aggregation state via unique Fe–N–V pre-coordination to optimize the adsorption-catalysis effect in high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2303705.

[8]

Chu, F. L.; Wang, M.; Liu, J. M.; Guan, Z. Q.; Yu, H. Y.; Liu, B.; Wu, F. X. Low concentration electrolyte enabling cryogenic lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205393.

[9]

Zhao, W. M.; Shen, J. D.; Xu, X. J.; He, W. X.; Liu, L.; Chen, Z. H.; Liu, J. Functional catalysts for polysulfide conversion in Li-S batteries: From micro/nanoscale to single atom. Rare Met. 2022, 41, 1080–1100.

[10]

Wang, B.; Wang, L.; Ding, D.; Zhai, Y. J.; Wang, F. B.; Jing, Z. X.; Yang, X. F.; Kong, Y. Y.; Qian, Y. T.; Xu, L. Q. Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium-sulfur batteries. Adv. Mater. 2022, 34, 2204403.

[11]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size. Adv. Mater. 2022, 34, 2107836.

[12]

Chu, F. L.; Deng, R. Y.; Wu, F. X. Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Mater. 2023, 56, 141–154.

[13]

Zhou, R. F.; Shen, S. H.; Zhong, Y.; Liu, P.; Zhang, Y. Q.; Zhang, L. J.; Wang, X. L.; Xia, X. H.; Tu, J. P. Co-construction of advanced sulfur host by implanting titanium carbide into Aspergillus niger spore carbon. Chin. Chem. Lett. 2022, 33, 3981–3986.

[14]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[15]

Li, S. Y.; Wang, W. P.; Duan, H.; Guo, Y. G. Recent progress on confinement of polysulfides through physical and chemical methods. J. Energy Chem. 2018, 27, 1555–1565.

[16]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[17]

Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 400–416.

[18]

Guan, Z. Q.; Chen, X. F.; Chu, F. L.; Deng, R. Y.; Wang, S. S.; Liu, J. M.; Wu, F. X. Low concentration electrolyte enabling anti-clustering of lithium polysulfides and 3D-growth of Li2S for low temperature Li-S conversion chemistry. Adv. Energy Mater. 2023, 13, 2302850.

[19]

Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.

[20]

Zhu, Y. F.; Wang, S.; Miao, Z. C.; Liu, Y.; Chou, S. L. Novel non-carbon sulfur hosts based on strong chemisorption for lithium-sulfur batteries. Small 2018, 14, 1801987.

[21]

Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391–5399.

[22]

Zhu, J. W.; Cao, J. Q.; Cai, G. L.; Zhang, J.; Zhang, W.; Xie, S.; Wang, J. X.; Jin, H. C.; Xu, J. J.; Kong, X. H. et al. Non-trivial contribution of carbon hybridization in carbon-based substrates to electrocatalytic activities in Li-S batteries. Angew. Chem., Int. Ed. 2023, 62, e202214351.

[23]

Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.

[24]

Deng, D. R.; Xue, F.; Bai, C. D.; Lei, J.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano 2018, 12, 11120–11129.

[25]

Li, Y. Y.; Wu, H. W.; Wu, D. H.; Wei, H. R.; Guo, Y. B.; Chen, H. Y.; Li, Z. J.; Wang, L.; Xiong, C. Y.; Meng, Q. J. et al. High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li2S-S8 redox kinetics in high areal capacity lithium-sulfur batteries. Adv. Sci. 2022, 9, 2200840.

[26]

Yang, Q.; Wei, X. J.; Cao, X.; Chen, L.; Song, L. X.; Kong, L.; Sun, W.; Xie, K. F.; Song, Y. Z. Unveiling the synergistic catalysis essence of trimetallic Fe-Co-Ni phosphides for lithium-sulfur chemistry. Chem. Eng. J. 2023, 452, 139638.

[27]

Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035–1043.

[28]

Deng, R. Y.; Yu, H. Y.; Liu, J. M.; Chu, F. L.; Lei, J.; Yang, L. Z.; Wu, F. X. Adsorption-catalytic effects of metallurgical ferrous slag on polysulfides in Li-S batteries. J. Mater. Chem. A 2023, 11, 15769–15777.

[29]

Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Qiao, S. M.; Zhong, Y. P.; Deng, X. Y.; Shi, X. S.; Zhang, Q.; Hao, C. et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries. ACS Nano 2021, 15, 20478–20488.

[30]

Cheng, P.; Shi, L. L.; Li, W. Q.; Fang, X. R.; Cao, D. L.; Zhao, Y. G.; Cao, P.; Liu, D. Q.; He, D. Y. Efficient regulation of polysulfides by MoS2/MoO3 heterostructures for high-performance Li-S batteries. Small 2023, 19, 2206083.

[31]

Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat. Catal. 2022, 5, 555–563.

[32]

Zhou, X. Y.; Cui, Y. C.; Huang, X.; Zhang, Q. Y.; Wang, B.; Tang, S. C. Interface engineering of Fe3Se4/FeSe heterostructures encapsulated in MXene for boosting LiPS conversion and inhibiting shuttle effect. Chem. Eng. J. 2023, 457, 141139.

[33]

Park, J.; Kim, E. T.; Kim, C.; Pyun, J.; Jang, H. S.; Shin, J.; Choi, J. W.; Char, K.; Sung, Y. E. The importance of confined sulfur nanodomains and adjoining electron conductive pathways in subreaction regimes of Li-S batteries. Adv. Energy Mater. 2017, 7, 1700074.

[34]

Hong, X. J.; Song, C. L.; Yang, Y.; Tan, H. C.; Li, G. H.; Cai, Y. P.; Wang, H. X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 2019, 13, 1923–1931.

[35]

Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

[36]

Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.

[37]

Wang, J.; Liang, J. N.; Wu, J. Z.; Xuan, C. J.; Wu, Z. X.; Guo, X. Y.; Lai, C. L.; Zhu, Y.; Wang, D. L. Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 6503–6509.

[38]

Zhang, W.; Shen, H. L.; Yin, M.; Lu, L. F.; Xu, B. B.; Li, D. D. Heterostructure silicon solar cells with enhanced power conversion efficiency based on Si x /Ni3+ self-doped NiO x passivating contact. ACS Omega 2022, 7, 16494–16501.

[39]

Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

[40]

Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

[41]

Zhang, Y. Q.; Chu, Q.; Shi, Y.; Gao, J. S.; Xiong, W.; Huang, L.; Ding, Y. Synthesis of bimetallic Ag-Ni-MOF-74 catalyst with excellent CO-SCR performance in low temperature range. Acta Chim. Sin. 2021, 79, 361–368.

[42]

Xia, J.; Liu, L.; Jamil, S.; Xie, J. J.; Yan, H. X.; Yuan, Y. T.; Zhang, Y.; Nie, S.; Pan, J.; Wang, X. Y. et al. Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 2019, 17, 1–11.

[43]

Fan, C. Y.; Zheng, Y. P.; Zhang, X. H.; Shi, Y. H.; Liu, S. Y.; Wang, H. C.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. High-performance and low-temperature lithium-sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638.

[44]

Ma, C.; Feng, Y. M.; Liu, X. J.; Yang, Y.; Zhou, L. J.; Chen, L. B.; Yan, C. L.; Wei, W. F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries. Energy Storage Mater. 2020, 32, 46–54.

[45]

Zhang, H.; Chen, J, W.; Li, Z.; Peng, Y.; Xu, J.; Wang, Y, G. Operating lithium-sulfur batteries in an ultrawide temperature range from −50 to 70 °C. Adv. Funct. Mater. 2023, 33, 2304433.

[46]

Chen, X. S.; Gao, Y.; Zhu, G. R.; Chen, H. J.; Chen, S. C.; Wang, X. L.; Wu, G.; Wang, Y. Z. Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. J. Energy Chem. 2020, 50, 248–259.

[47]

Nomiya, K.; Takahashi, T.; Shirai, T.; Miwa, M. Anderson-type heteropolyanions of molybdenum(VI) and tungsten(VI). Polyhedron 1987, 6, 213–218.

Nano Research
Cite this article:
Chen J, Lei J, Zhou J, et al. Polysulfides adsorption and catalysis dual-sites on metal-doped molybdenum oxide nanoclusters for Li-S batteries with wide operating temperature. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6879-8
Topics:

370

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 May 2024
Revised: 03 July 2024
Accepted: 11 July 2024
Published: 16 August 2024
© Tsinghua University Press 2024
Return