AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polysulfides adsorption and catalysis dual-sites on metal-doped molybdenum oxide nanoclusters for Li-S batteries with wide operating temperature

Jieshuangyang Chen1,§Jie Lei2,§Jinwei Zhou1Xuanfeng Chen1Rongyu Deng1Mingzhi Qian1Ya Chen1( )Feixiang Wu1( )
School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, China
College of Materials Science and Engineering, Institute of New Energy Materials and Engineering, Fuzhou University, Fuzhou 350108, China

§ Jieshuangyang Chen and Jie Lei contributed equally to this work.

Show Author Information

Graphical Abstract

A novel catalyst NiCo-MoOx/rGO (rGO = reduced graphene oxides) is developed to simultaneously present the superior adsorption ability and excellent catalytic activity without the limitation of Sabatier effect, achieving high-performance Li-S batteries with wide operating temperature from −20 to 60 °C.

Abstract

The development of electrocatalysts with high catalytic activity is conducive to enhancing polysulfides adsorption and reducing activation energy of polysulfides conversion, which can effectively reduce polysulfide shuttling in Li-S batteries. Herein, a novel catalyst NiCo-MoOx/rGO (rGO = reduced graphene oxides) with ultra-nanometer scale and high dispersity is derived from the Anderson-type polyoxometalate precursors, which are electrostatically assembled on the multilayer rGO. The catalyst material possesses dual active sites, in which Ni-doped MoOx exhibits strong polysulfide anchoring ability, while Co-doped MoOx facilitates the polysulfides conversion reaction kinetics, thus breaking the Sabatier effect in the conventional electrocatalytic process. In addition, the prepared NiCo-MoOx/rGO modified PP separator (NiCo-MoOx/rGO@PP) can serve as a physical barrier to further inhibit the polysulfide shuttling effect and realize the rapid Li+ migration. The results demonstrate that Li-S coin cell with NiCo-MoOx/rGO@PP separator shows excellent cycling performance with the discharge capacity of 680 mAh·g−1 after 600 cycles at 1 C and the capacity fading of 0.064% per cycle. The rate performance is also impressive with the remained capacity of 640 mAh·g−1 after 200 cycles even at 4 C. When the sulfur loading is 4.0 mg·cm−2 and electrolyte volume/sulfur mass ratio (E/S) ratio is 6.0 μL·mg−1, a specific capacity of 830 mAh·g−1 is achieved after 200 cycles with a capacity decay of 0.049% per cycle. More importantly, the cell with NiCo-MoOx/rGO@PP separator exhibits cycling performance under wide operating temperature with the reversible capacities of 518, 715, and 915 mAh·g−1 after 100 cycles at −20, 0, and 60 °C, respectively. This study provides a new design approach of highly efficient catalysts for sulfur conversion reaction in Li-S batteries.

Electronic Supplementary Material

Download File(s)
6879_ESM.pdf (4.7 MB)

References

[1]

Ren, Y. L.; Chang, S. Z.; Hu, L. B.; Wang, B.; Sun, D. Y.; Wu, H.; Ma, Y. J.; Yang, Y. R.; Tang, S. C.; Meng, X. K. A bidirectional electrocatalyst for enhancing Li2S nucleation and decomposition kinetics in lithium-sulfur batteries. J. Mater. Chem. A 2022, 10, 17532–17543.

[2]

Li, Y. N.; Deng, Y. R.; Yang, J. L.; Tang, W. H.; Ge, B.; Liu, R. P. Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium-sulfur battery. Adv. Funct. Mater. 2023, 33, 2302267.

[3]

Deng, R. Y.; Chu, F. L.; Kwofie, K.; Guan, Z. Q.; Chen, J. S. Y.; Wu, F. X. A low-concentration electrolyte for high-voltage lithium-metal batteries: Fluorinated solvation shell and low salt concentration effect. Angew. Chem., Int. Ed. 2022, 134, e202215866.

[4]

Wang, N. N.; Zhang, X.; Ju, Z. Y.; Yu, X. W.; Wang, Y. X.; Du, Y.; Bai, Z. C.; Dou, S. X.; Yu, G. H. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 2021, 12, 4519.

[5]

Zou, K. Y.; Chen, X. X.; Jing, W. T.; Dai, X.; Wang, P. F.; Liu, Y.; Qiao, R.; Shi, M.; Chen, Y. Z.; Sun, J. J. et al. Facilitating catalytic activity of indium oxide in lithium-sulfur batteries by controlling oxygen vacancies. Energy Storage Mater. 2022, 48, 133–144.

[6]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[7]

Yang, L. B.; Wang, X. W.; Cheng, X. M.; Zhang, Y. Z.; Ma, C.; Zhang, Y. Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Regulating Fe aggregation state via unique Fe–N–V pre-coordination to optimize the adsorption-catalysis effect in high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2303705.

[8]

Chu, F. L.; Wang, M.; Liu, J. M.; Guan, Z. Q.; Yu, H. Y.; Liu, B.; Wu, F. X. Low concentration electrolyte enabling cryogenic lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205393.

[9]

Zhao, W. M.; Shen, J. D.; Xu, X. J.; He, W. X.; Liu, L.; Chen, Z. H.; Liu, J. Functional catalysts for polysulfide conversion in Li-S batteries: From micro/nanoscale to single atom. Rare Met. 2022, 41, 1080–1100.

[10]

Wang, B.; Wang, L.; Ding, D.; Zhai, Y. J.; Wang, F. B.; Jing, Z. X.; Yang, X. F.; Kong, Y. Y.; Qian, Y. T.; Xu, L. Q. Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium-sulfur batteries. Adv. Mater. 2022, 34, 2204403.

[11]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size. Adv. Mater. 2022, 34, 2107836.

[12]

Chu, F. L.; Deng, R. Y.; Wu, F. X. Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy Storage Mater. 2023, 56, 141–154.

[13]

Zhou, R. F.; Shen, S. H.; Zhong, Y.; Liu, P.; Zhang, Y. Q.; Zhang, L. J.; Wang, X. L.; Xia, X. H.; Tu, J. P. Co-construction of advanced sulfur host by implanting titanium carbide into Aspergillus niger spore carbon. Chin. Chem. Lett. 2022, 33, 3981–3986.

[14]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[15]

Li, S. Y.; Wang, W. P.; Duan, H.; Guo, Y. G. Recent progress on confinement of polysulfides through physical and chemical methods. J. Energy Chem. 2018, 27, 1555–1565.

[16]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[17]

Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 400–416.

[18]

Guan, Z. Q.; Chen, X. F.; Chu, F. L.; Deng, R. Y.; Wang, S. S.; Liu, J. M.; Wu, F. X. Low concentration electrolyte enabling anti-clustering of lithium polysulfides and 3D-growth of Li2S for low temperature Li-S conversion chemistry. Adv. Energy Mater. 2023, 13, 2302850.

[19]

Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.

[20]

Zhu, Y. F.; Wang, S.; Miao, Z. C.; Liu, Y.; Chou, S. L. Novel non-carbon sulfur hosts based on strong chemisorption for lithium-sulfur batteries. Small 2018, 14, 1801987.

[21]

Wu, F. X.; Chu, F. L.; Ferrero, G. A.; Sevilla, M.; Fuertes, A. B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting high-performance in lithium-sulfur batteries via dilute electrolyte. Nano Lett. 2020, 20, 5391–5399.

[22]

Zhu, J. W.; Cao, J. Q.; Cai, G. L.; Zhang, J.; Zhang, W.; Xie, S.; Wang, J. X.; Jin, H. C.; Xu, J. J.; Kong, X. H. et al. Non-trivial contribution of carbon hybridization in carbon-based substrates to electrocatalytic activities in Li-S batteries. Angew. Chem., Int. Ed. 2023, 62, e202214351.

[23]

Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.

[24]

Deng, D. R.; Xue, F.; Bai, C. D.; Lei, J.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano 2018, 12, 11120–11129.

[25]

Li, Y. Y.; Wu, H. W.; Wu, D. H.; Wei, H. R.; Guo, Y. B.; Chen, H. Y.; Li, Z. J.; Wang, L.; Xiong, C. Y.; Meng, Q. J. et al. High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li2S-S8 redox kinetics in high areal capacity lithium-sulfur batteries. Adv. Sci. 2022, 9, 2200840.

[26]

Yang, Q.; Wei, X. J.; Cao, X.; Chen, L.; Song, L. X.; Kong, L.; Sun, W.; Xie, K. F.; Song, Y. Z. Unveiling the synergistic catalysis essence of trimetallic Fe-Co-Ni phosphides for lithium-sulfur chemistry. Chem. Eng. J. 2023, 452, 139638.

[27]

Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035–1043.

[28]

Deng, R. Y.; Yu, H. Y.; Liu, J. M.; Chu, F. L.; Lei, J.; Yang, L. Z.; Wu, F. X. Adsorption-catalytic effects of metallurgical ferrous slag on polysulfides in Li-S batteries. J. Mater. Chem. A 2023, 11, 15769–15777.

[29]

Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Qiao, S. M.; Zhong, Y. P.; Deng, X. Y.; Shi, X. S.; Zhang, Q.; Hao, C. et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries. ACS Nano 2021, 15, 20478–20488.

[30]

Cheng, P.; Shi, L. L.; Li, W. Q.; Fang, X. R.; Cao, D. L.; Zhao, Y. G.; Cao, P.; Liu, D. Q.; He, D. Y. Efficient regulation of polysulfides by MoS2/MoO3 heterostructures for high-performance Li-S batteries. Small 2023, 19, 2206083.

[31]

Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat. Catal. 2022, 5, 555–563.

[32]

Zhou, X. Y.; Cui, Y. C.; Huang, X.; Zhang, Q. Y.; Wang, B.; Tang, S. C. Interface engineering of Fe3Se4/FeSe heterostructures encapsulated in MXene for boosting LiPS conversion and inhibiting shuttle effect. Chem. Eng. J. 2023, 457, 141139.

[33]

Park, J.; Kim, E. T.; Kim, C.; Pyun, J.; Jang, H. S.; Shin, J.; Choi, J. W.; Char, K.; Sung, Y. E. The importance of confined sulfur nanodomains and adjoining electron conductive pathways in subreaction regimes of Li-S batteries. Adv. Energy Mater. 2017, 7, 1700074.

[34]

Hong, X. J.; Song, C. L.; Yang, Y.; Tan, H. C.; Li, G. H.; Cai, Y. P.; Wang, H. X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 2019, 13, 1923–1931.

[35]

Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

[36]

Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.

[37]

Wang, J.; Liang, J. N.; Wu, J. Z.; Xuan, C. J.; Wu, Z. X.; Guo, X. Y.; Lai, C. L.; Zhu, Y.; Wang, D. L. Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 6503–6509.

[38]

Zhang, W.; Shen, H. L.; Yin, M.; Lu, L. F.; Xu, B. B.; Li, D. D. Heterostructure silicon solar cells with enhanced power conversion efficiency based on Si x /Ni3+ self-doped NiO x passivating contact. ACS Omega 2022, 7, 16494–16501.

[39]

Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

[40]

Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

[41]

Zhang, Y. Q.; Chu, Q.; Shi, Y.; Gao, J. S.; Xiong, W.; Huang, L.; Ding, Y. Synthesis of bimetallic Ag-Ni-MOF-74 catalyst with excellent CO-SCR performance in low temperature range. Acta Chim. Sin. 2021, 79, 361–368.

[42]

Xia, J.; Liu, L.; Jamil, S.; Xie, J. J.; Yan, H. X.; Yuan, Y. T.; Zhang, Y.; Nie, S.; Pan, J.; Wang, X. Y. et al. Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 2019, 17, 1–11.

[43]

Fan, C. Y.; Zheng, Y. P.; Zhang, X. H.; Shi, Y. H.; Liu, S. Y.; Wang, H. C.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. High-performance and low-temperature lithium-sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638.

[44]

Ma, C.; Feng, Y. M.; Liu, X. J.; Yang, Y.; Zhou, L. J.; Chen, L. B.; Yan, C. L.; Wei, W. F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries. Energy Storage Mater. 2020, 32, 46–54.

[45]

Zhang, H.; Chen, J, W.; Li, Z.; Peng, Y.; Xu, J.; Wang, Y, G. Operating lithium-sulfur batteries in an ultrawide temperature range from −50 to 70 °C. Adv. Funct. Mater. 2023, 33, 2304433.

[46]

Chen, X. S.; Gao, Y.; Zhu, G. R.; Chen, H. J.; Chen, S. C.; Wang, X. L.; Wu, G.; Wang, Y. Z. Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. J. Energy Chem. 2020, 50, 248–259.

[47]

Nomiya, K.; Takahashi, T.; Shirai, T.; Miwa, M. Anderson-type heteropolyanions of molybdenum(VI) and tungsten(VI). Polyhedron 1987, 6, 213–218.

Nano Research
Pages 9651-9661
Cite this article:
Chen J, Lei J, Zhou J, et al. Polysulfides adsorption and catalysis dual-sites on metal-doped molybdenum oxide nanoclusters for Li-S batteries with wide operating temperature. Nano Research, 2024, 17(11): 9651-9661. https://doi.org/10.1007/s12274-024-6879-8
Topics:

510

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 16 May 2024
Revised: 03 July 2024
Accepted: 11 July 2024
Published: 16 August 2024
© Tsinghua University Press 2024
Return