AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

rGO aerogel embedded with organic–inorganic hybrid perovskite for lightweight broadband electromagnetic wave absorption

Xueying Zhao1,2Xiaohui Sun1,2Wei Wu1,2Peng Tang1,2JiaWei Du2Xuyang Zhang2Haining Qian2Ruihui Peng2Xiangwei Wang1,2( )Yaohong Zhang3( )Guohua Wu1,2,4( )
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
School of Physics, Northwest University, Xi’an 710127, China
The Key Laboratory of Functional Molecular Solids, Ministry of Education, Wuhu 241002, China
Show Author Information

Graphical Abstract

Abstract

Organic–inorganic hybrid perovskites are quite promising candidates in the field of electromagnetic wave (EMW) absorption due to their unique physicochemical properties. However, it is still a considerable challenge to satisfy the light weight, broad bandwidth, and strong absorption properties simultaneously. Herein, the solution of methylammonium lead iodide (MAPbI3) perovskites was infiltrated into the pores of reduced graphene oxide (rGO) aerogels. After drying, a series of MAPbI3/rGO composite aerogel (MGA) materials were synthesized by anchoring the MAPbI3 perovskite nanoparticles to rGO sheets with the assistance of rGO templates. Through the adjustment of component ratios, excellent EMW absorption properties are obtained with the synergistic effects of polarization loss, conduction loss, and multiple reflection and scattering of MAPbI3 and rGO. The porous structure of the aerogel and the suitable group distribution ratio allowed the MGA-4 samples to obtain excellent impedance matching and ultra-low density of ~ 7.69 mg·cm−3. At a low filling ratio of 15 wt.%, the MGA-4 sample simultaneously achieves highly efficient and broadband EMW absorption performance at a thin thickness. The MGA-4 sample obtained a minimum reflection loss value of −64.35 dB and the effective absorption bandwidth (EAB) value of 5.4 GHz at a thickness of 2.08 mm and a maximum EAB (EABmax) value of 6.2 GHz under 2.22 mm. The MGA-5 sample obtained a maximum EAB value of 6.4 GHz with the thinckness of 2.16 mm. Furthermore, the simulation results of the radar cross-section (RCS) verified the component-optimized composites are capable of achieving excellent EMW attenuation. This paper provides a new approach and valuable reference for the development of hybrid perovskite-based microwave absorption materials with lightweight, ultra-broadband, and strong absorption properties.

Electronic Supplementary Material

Download File(s)
6880_ESM.pdf (8.7 MB)

References

[1]

Li, B.; Wang, F. L.; Wang, K. J.; Qiao, J.; Xu, D. M.; Yang, Y. F.; Zhang, X.; Lyu, L. F.; Liu, W.; Liu, J. R. Metal sulfides based composites as promising efficient microwave absorption materials: A review. J. Mater. Sci. Technol. 2022, 104, 244–268.

[2]

Jiang, B.; Qi, C. L.; Yang, H.; Wu, X.; Yang, W.; Zhang, C.; Li, S. Y.; Wang, L. H.; Li, Y. F. Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations. Carbon 2023, 208, 390–409.

[3]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[4]

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

[5]

Das, P.; Ganguly, S.; Perelshtein, I.; Margel, S.; Gedanken, A. Acoustic green synthesis of graphene-gallium nanoparticles and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl. Nano Mater. 2022, 5, 1644–1655.

[6]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[7]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[8]

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Lightweight Ni foam-based ultra-roadband electromagnetic wave absorber. Adv. Funct. Mater. 2021, 31, 2103436.

[9]

Zhang, S. J.; Jia, Z. R.; Cheng, B.; Zhao, Z. W.; Lu, F.; Wu, G. L. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review. Adv. Compos. Hybrid Mater. 2022, 5, 2440–2460.

[10]

Yan, J.; Zheng, Q.; Wang, S. P.; Tian, Y. Z.; Gong, W. Q.; Gao, F.; Qiu, J. J.; Li, L.; Yang, S. H.; Cao, M. S. Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 2023, 35, 2300015.

[11]

Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011–2038.

[12]

Zhang, C.; Mu, C. P.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Song, J. F.; Wang, C.; Liu, Z. Y. Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites. J. Mater. Sci. 2017, 52, 13023–13032.

[13]

Zhang, Z.; Xiong, Z. M.; Yao, Y.; Shi, X. M.; Zhang, P.; Yang, Z. Q.; Zhao, Q.; Zhou, W. K. Inorganic halide perovskite electromagnetic wave absorption system with ultra-wide absorption bandwidth and high thermal-stability. Adv. Electron. Mater. 2023, 9, 2201179.

[14]

Zhang, Z.; Yao, Y.; Zhang, J. N.; Ma, Y.; Xu, P.; Zhang, P.; Yang, Z. Q.; Zhou, W. K. Two-dimensional (PEA)2PbBr4 perovskite modified with conductive network for high-performance electromagnetic wave absorber. Mater. Lett. 2022, 326, 132926.

[15]

Yu, H. T.; Liu, H.; Yao, Y.; Xiong, Z. M.; Gao, L.; Yang, Z. Q.; Zhou, W. K.; Zhang, Z. A highly efficient electromagnetic wave absorption system with graphene embedded in hybrid perovskite. Micromachines 2023, 14, 1611.

[16]

Zhang, Z.; Xiong, Z. M.; Yao, Y.; Wang, D. R.; Yang, Z. Q.; Zhang, P.; Zhao, Q.; Zhou, W. K. Constructing conductive network in hybrid perovskite for a highly efficient microwave absorption system. Adv. Funct. Mater. 2022, 32, 2206053.

[17]

Guo, H.; Yang, J.; Pu, B. X.; Chen, H. Y.; Li, Y. L.; Wang, Z. M.; Niu, X. B. Excellent microwave absorption of lead halide perovskites with high stability. J. Mater. Chem. C 2018, 6, 4201–4207.

[18]

Kucheriv, O. I.; Oliynyk, V. V.; Zagorodnii, V. V.; Launets, V. L.; Fritsky, I. O.; Gural’skiy, I. A. Hybrid organic-inorganic perovskites as microwave radiation switches. Mater. Adv. 2022, 3, 8260–8266.

[19]

Li, M.; Zhao, X. Y.; Tang, P.; Zhang, X. Y.; Wu, Y. F.; Jin, T. F.; Liu, R. X.; Wu, G. H.; Wang, X. W. Facile synthesis of MAPbI3/CNTs composites with superior electromagnetic wave absorption performances. Ceram. Int. 2023, 49, 40970–40980.

[20]

Zhao, X. Y.; Li, M.; Sun, X. H.; Zhang, X. Y.; Wang, Z. S.; Lu, Z. D.; Wang, X. W.; Wu, G. H. Strong microwave absorption performance of simply grinding FAPbI3/CNTs composite absorbers. Colloids Surf. A Physicochem. Eng. Asp. 2024, 686, 133407.

[21]

Zhao, X. X.; Huang, Y.; Jiang, H. Y.; Liu, X. D.; Yu, M.; Zong, M. Designed MoSe2 modified multi-layer hollow carbon fiber composite material achieves tunable electromagnetic wave absorption in the X and Ku bands. Carbon 2024, 224, 119063.

[22]

Zhao, X. X.; Huang, Y.; Liu, X. D.; Jiang, H. Y.; Yu, M.; Ma, X. F.; Zong, M.; Liu, P. B. Hollow multi-layer bowknot like nanoparticles surface modified by TMDs Derived flexible fiber membranes for electromagnetic wave absorption. Chem. Eng. J. 2024, 483, 149085.

[23]

Zhao, X. X.; Huang, Y.; Liu, X. D.; Yu, M.; Zong, M.; Li, T. H. Magnetic nanorods/carbon fibers heterostructures coated with flower-like MoS2 layers for superior microwave absorption. Carbon 2023, 213, 118265.

[24]

Huang, X. G.; Yu, G. Y.; Zhang, Y. K.; Zhang, M. J.; Shao, G. F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894.

[25]

Agrawal, P. R.; Kumar, R.; Teotia, S.; Kumari, S.; Mondal, D. P.; Dhakate, S. R. Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B Eng. 2019, 160, 131–139.

[26]

Shu, R. W.; Nie, L. J.; Zhao, Z. W.; Yang, X. H. Synthesis of nitrogen-doped reduced graphene oxide/magnesium ferrite/polyaniline composite aerogel as a lightweight, broadband and efficient microwave absorber. J. Mater. Sci. Technol. 2024, 175, 115–124.

[27]

Dai, D. F.; Zhou, Y.; Xiao, W. Q.; Hao, Z. L.; Zhang, H.; Wang, J.; Cai, J. M. Multiple functional base-induced highly ordered graphene aerogels. J. Mater. Chem. C 2021, 9, 8849–8854.

[28]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[29]

Bao, Y. F.; Guo, S. Y.; Li, Y.; Jia, Z. Q.; Guan, H. L.; Lei, D. Y.; Chen, J. Z.; Zhong, B. M.; Li, Z. H. Lightweight honeycomb rGO/Ti3C2T x MXene aerogel without magnetic metals toward efficient electromagnetic wave absorption performance. ACS Appl. Electron. Mater. 2023, 5, 227–239.

[30]

Fu, X. Y.; Zheng, Q.; Li, L.; Cao, M. S. Vertically implanting MoSe2 nanosheets on the rGO sheets towards excellent multi-band microwave absorption. Carbon 2022, 197, 324–333.

[31]

Huang, X. G.; Wei, J. W.; Zhang, Y. K.; Qian, B. B.; Jia, Q.; Liu, J.; Zhao, X. J.; Shao, G. F. Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 107.

[32]

Guo, Y.; Wang, D. D.; Tian, Y.; Wang, J. W.; Bai, T. T.; Liu, H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. FeCo alloy nanoparticle decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. J. Mater. Chem. C 2022, 10, 126–134.

[33]

Huang, X. M.; Liu, X. H.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Wu, G. L. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 2021, 4, 1398–1412.

[34]

Yadav, R. S.; Kuřitka, I. Recent advances on outstanding microwave absorption and electromagnetic interference shielding nanocomposites of ZnO Semiconductor. Adv. Colloid Interface Sci. 2024, 326, 103137.

[35]

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2021, 8, 2004640.

[36]

Lan, D.; Gao, Z. G.; Zhao, Z. H.; Wu, G. L.; Kou, K. C.; Wu, H. J. Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. 2021, 408, 127313.

[37]

Franssen, W. M. J.; Van Heumen, C. M. M.; Kentgens, A. P. M. Structural investigations of MA1– x DMA x PbI3 mixed-cation perovskites. Inorg. Chem. 2020, 59, 3730–3739.

[38]

Li, M. Y.; Tang, X.; Wang, S. L.; Li, T. T.; Li, J. T.; Zhao, H. L.; Li, Q. Y.; Wang, Q.; Zhang, Y. T.; Yao, J. Q. Synergistic optimization of photothermoelectric performance of a perovkite/graphene composite. Ceram. Int. 2022, 48, 4366–4370.

[39]

Ju, D. X.; Zhao, T. Y.; Deng, Y. Y.; Zhang, G. D.; Hu, X. B.; Cui, D. L.; Tao, X. T. Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties. J. Mater. Chem. A 2017, 5, 21919–21925.

[40]

Zhou, X. F.; Ge, C. Y.; Liang, X.; Wang, F.; Duan, D. W.; Lin, H. R.; Zhu, Q. Y.; Hu, H. L. Dimethylammonium cation-induced 1D/3D heterostructure for efficient and stable perovskite solar cells. Molecules 2022, 27, 7566.

[41]

Pei, Y. H.; Liu, Y.; Li, F. M.; Bai, S.; Jian, X.; Liu, M. Z. Unveiling property of hydrolysis-derived DMAPbI3 for perovskite devices: Composition engineering, defect mitigation, and stability optimization. iScience 2019, 15, 165–172.

[42]

Ke, W. J.; Spanopoulos, I.; Stoumpos, C. C.; Kanatzidis, M. G. Myths and reality of HPbI3 in halide perovskite solar cells. Nat. Commun. 2018, 9, 4785.

[43]

Chen, X. M.; Xu, Y.; Wang, Z. X.; Wu, R. J.; Cheng, H. L.; Chui, H. C. Characterization of a CH3NH3PbI3 perovskite microwire by Raman spectroscopy. J. Raman Spectrosc. 2022, 53, 288–296.

[44]

Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The Raman spectrum of the CH3NH3PbI3 Hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279–284.

[45]

Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943.

[46]

Deng, Y. H. Common phase and structure misidentifications in high-resolution TEM characterization of perovskite materials. Condens. Matter 2020, 6, 1.

[47]

Chen, S. L.; Zhang, Y.; Zhao, J. J.; Mi, Z.; Zhang, J. M.; Cao, J.; Feng, J. C.; Zhang, G. L.; Qi, J. L.; Li, J. Y. et al. Transmission electron microscopy of organic–inorganic hybrid perovskites: Myths and truths. Sci. Bull. 2020, 65, 1643–1649.

[48]

Zhao, Y. J.; Qi, H. B.; Dong, X. Y.; Yang, Y.; Zhai, W. Customizable resilient multifunctional graphene aerogels via blend-spinning assisted freeze casting. ACS Nano 2023, 17, 15615–15628.

[49]

Wu, Y. Q.; Wang, P.; Zhu, X. L.; Zhang, Q. Q.; Wang, Z. Y.; Liu, Y. Y.; Zou, G. Z.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342.

[50]

Mahmoudi, T.; Wang, Y. S.; Hahn, Y. B. Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy 2021, 79, 105452.

[51]

Gong, C. C.; Ding, J. W.; Wang, C. X.; Zhang, Y. J.; Guo, Y.; Song, K.; Shi, C. S.; He, F. Defect-induced dipole polarization engineering of electromagnetic wave absorbers: Insights and perspectives. Compos. Part B Eng. 2023, 252, 110479.

[52]

Li, C.; Zhang, N.; Gao, P. Lessons learned: How to report XPS data incorrectly about lead-halide perovskites. Mater. Chem. Front. 2023, 7, 3797–3802.

[53]

Kot, M.; Vorokhta, M.; Wang, Z. P.; Snaith, H. J.; Schmeißer, D.; Flege, J. I. Thermal stability of CH3NH3PbI x Cl3− x versus [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films by X-Ray photoelectron spectroscopy. Appl. Surf. Sci. 2020, 513, 145596.

[54]

Kim, S. S.; Jo, S. B.; Gueon, K. I.; Choi, K. K.; Kim, J. M.; Churn, K. S. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 1991, 27, 5462–5464.

[55]

Qiao, J.; Li, L. T.; Liu, J. R.; Wu, N.; Liu, W.; Wu, F.; Zeng, Z. H. The vital application of rare earth for future high-performance electromagnetic wave absorption materials: A review. J. Mater. Sci. Technol. 2024, 176, 188–203.

[56]

Jiang, Y. C.; Zhang, H.; Zuo, X. Q.; Sun, C.; Zhang, Y. F.; Huang, H.; Fan, Z.; Li, C. W.; Pan, L. J. Construction of ZnO/Ni@C hollow microspheres as efficient electromagnetic wave absorbers with thin thickness and broad bandwidth. J. Mater. Sci. Technol. 2024, 188, 62–72.

[57]

Zhang, X.; Qiao, J.; Jiang, Y. Y.; Wang, F. L.; Tian, X. L.; Wang, Z.; Wu, L. L.; Liu, W.; Liu, J. R. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 2021, 13, 135.

[58]

Cole, K. S.; Cole, R. H. Dispersion and absorption in dielectrics I Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351.

[59]

Feng, W. L.; Luo, H.; Wang, Y.; Zeng, S. F.; Deng, L. W.; Zhou, X. S.; Zhang, H. B.; Peng, S. M. Ti3C2 MXene: A promising microwave absorbing material. RSC Adv. 2018, 8, 2398–2403.

[60]

Sun, X. H.; Zhao, X. Y.; Zhang, X. Y.; Wu, G. H.; Rong, X. H.; Wang, X. W. TiO2 nanosheets/Ti3C2T x MXene 2D/2D composites for excellent microwave absorption. ACS Appl. Nano Mater. 2023, 6, 14421–14430.

[61]

Zhang, M. Y.; Sun, X. H.; Cai, X. D.; Zhan, X. L.; Wu, Y. F.; Zhang, X. Y.; Wu, G. H.; Wang, X. W. Large microsphere structure of a Co/C composite derived from Co-MOF with excellent wideband electromagnetic microwave absorption performance. ACS Appl. Mater. Interfaces 2023, 15, 59681–59692.

[62]

Ma, Z.; Cao, C. T.; Liu, Q. F.; Wang, J. B. A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 2012, 29, 038401.

[63]

Li, J. X.; Chen, Q. L. Crystal structure engineering of GdFeO3/MXene composites with excellent electromagnetic wave absorption: Role of phase transition and high polarizability. J. Alloys Compd. 2023, 967, 171737.

[64]

Zhang, X. C.; Li, B.; Xu, J.; Zhang, X.; Shi, Y. A.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2210456.

Nano Research
Cite this article:
Zhao X, Sun X, Wu W, et al. rGO aerogel embedded with organic–inorganic hybrid perovskite for lightweight broadband electromagnetic wave absorption. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6880-2
Topics:

430

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 May 2024
Revised: 05 July 2024
Accepted: 14 July 2024
Published: 06 August 2024
© Tsinghua University Press 2024
Return