Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The use of bioinert materials is crucially important for medicine and bioengineering. The most popular systems in this context are oligo- and poly(ethylene glycols) (OEGs and PEGs), applied generally in different forms as bulk materials, thin films, and functional molecular groups. Here, I review the fabrication, properties, and applications of porous hydrogel PEG films (PHFs) and nanosheets (PHNs) formed by thermally activated crosslinking of amino- and epoxy-terminated, star-branched PEG oligomers with variable molecular weight. These systems possess various useful characteristics, including tunable thickness and porosity, hydrogel properties, bioinertness, robustness, and extreme elasticity. They can serve as the basis for composite materials, advanced nanofabrication, and lithography, bioinert supports for high-resolution transmission electron microscopy, susceptible elements in micro-electromechanical systems, and basic building blocks of temperature, humidity, chemical, and biological sensors. Representative examples of the respective applications are provided. Even though these examples span a broad field-from nanoengineering to biosensing, the applications of the PHFs and PHNs are certainly not limited to these cases but can be specifically adapted and extended to other fields, such as tissue engineering and drug delivery, relying on versatility and tunability of these systems.
Jeon, S. I.; Lee, J. H.; Andrade, J. D.; De Gennes, P. G. Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J. Colloid Interface Sci. 1991, 142, 149–158.
Rosenhahn, A.; Schilp, S.; Kreuzer, H. J.; Grunze, M. The role of “inert” surface chemistry in marine biofouling prevention. Phys. Chem. Chem. Phys. 2010, 12, 4275–4286.
Zhao, X. B.; Si, J. X.; Huang, D. S.; Li, K.; Xin, Y.; Sui, M. Application of star poly(ethylene glycol) derivatives in drug delivery and controlled release. J. Control. Release 2020, 323, 565–577.
Christophis, C.; Grunze, M.; Rosenhahn, A. Quantification of the adhesion strength of fibroblastcells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay. Phys. Chem. Chem. Phys. 2010, 12, 4498–4504.
Shen, M. C.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A. PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: In vitro and in vivo studies. J. Biomater. Sci. Polym. Ed. 2002, 13, 367–390.
Prime, K. L.; Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. Soc. 1993, 115, 10714–10721.
Herrwerth, S.; Eck, W.; Reinhardt, S.; Grunze, M. Factors that determine the protein resistance of oligoether self-assembled monolayers-internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J. Am. Chem. Soc. 2003, 125, 9359–9366.
Kim, S.; Gim, T.; Jeong, Y.; Ryu, J. H.; Kang, S. M. Facile construction of robust multilayered PEG films on polydopamine-coated solid substrates for marine antifouling applications. ACS Appl. Mater. Interfaces 2018, 10, 7626–7631.
Cambria, E.; Renggli, K.; Ahrens, C. C.; Cook, C. D.; Kroll, C.; Krueger, A. T.; Imperiali, B.; Griffith, L. G. Covalent modification of synthetic hydrogels with bioactive proteins via sortase-mediated ligation. Biomacromolecules 2015, 16, 2316–2326.
Hammer, J. A.; Ruta, A.; Therien, A. M.; West, J. L. Cell-compatible, site-specific covalent modification of hydrogel scaffolds enables user-defined control over cell-material interactions. Biomacromolecules 2019, 20, 2486–2493.
Larsson, A.; Ekblad, T.; Andersson, O.; Liedberg, B. Photografted poly(ethylene glycol) matrix for affinity interaction studies. Biomacromolecules 2007, 8, 287–295.
Chen, R. T.; Marchesan, S.; Evans, R. A.; Styan, K. E.; Such, G. K.; Postma, A.; McLean, K. M.; Muir, B. W.; Caruso, F. Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels. Biomacromolecules 2012, 13, 889–895.
Cėpla, V.; Rakickas, T.; Stankevičienė, G.; Mazėtytė-Godienė, A.; Baradokė, A.; Ruželė, Ž.; Valiokas, R. Photografting and patterning of poly(ethylene glycol) methacrylate hydrogel on glass for biochip applications. ACS Appl. Mater. Interfaces 2020, 12, 32233–32246.
Groll, J.; Amirgoulova, E. V.; Ameringer, T.; Heyes, C. D.; Röcker, C.; Nienhaus, G. U.; Möller, M. Biofunctionalized, Ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J. Am. Chem. Soc. 2004, 126, 4234–4239.
Groll, J.; Ameringer, T.; Spatz, J. P.; Moeller, M. Ultrathin coatings from isocyanate-terminated star PEG prepolymers: Layer formation and characterization. Langmuir 2005, 21, 1991–1999.
Gasteier, P.; Reska, A.; Schulte, P.; Salber, J.; Offenhäusser, A.; Moeller, M.; Groll, J. Surface grafting of PEO-based star-shaped molecules for bioanalytical and biomedical applications. Macromol. Biosci. 2007, 7, 1010–1023.
Tan, H. P.; DeFail, A. J.; Rubin, J. P.; Chu, C. R.; Marra, K. G. Novel multiarm PEG-based hydrogels for tissue engineering. J. Biomed. Mater. Res. A 2010, 92A, 979–987.
Zhu, J. M. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656.
Jeong, J. H.; Hong, S. W.; Hong, S.; Yook, S.; Jung, Y.; Park, J. B.; Khue, C. D.; Im, B. H.; Seo, J.; Lee, H. et al. Surface camouflage of pancreatic islets using 6-arm-PEG-catechol in combined therapy with tacrolimus and anti-CD154 monoclonal antibody for xenotransplantation. Biomaterials 2011, 32, 7961–7970.
Teramura, Y.; Oommen, O. P.; Olerud, J.; Hilborn, J.; Nilsson, B. Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimide-conjugated PEG-lipid with multifunctional crosslinkers. Biomaterials 2013, 34, 2683–2693.
Ding, M.; Jing, L.; Yang, H.; Machnicki, C. E.; Fu, X.; Li, K.; Wong, I. Y.; Chen, P. Y. Multifunctional soft machines based on stimuli-responsive hydrogels: From freestanding hydrogels to smart integrated systems. Mater. Today Adv. 2020, 8, 100088.
Dong, Y. X.; Ramey-Ward, A. N.; Salaita, K. Programmable mechanically active hydrogel-based materials. Adv. Mater. 2021, 33, 2006600.
El Sayed, M. M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023, 31, 2855–2879.
Meyerbröker, N.; Kriesche, T.; Zharnikov, M. Novel ultrathin poly(ethylene glycol) films as flexible platform for biological applications and plasmonics. ACS Appl. Mater. Interfaces 2013, 5, 2641–2649.
Zhao, Z. Y.; Das, S.; Zharnikov, M. Tuning the properties of poly(ethylene glycol) films and membranes by the molecular weight of the precursors. ACS Appl. Polym. Mater. 2022, 4, 645–653.
Khan, M.; Schuster, S.; Zharnikov, M. Chemical derivatization and biofunctionalization of hydrogel nanomembranes for potential biomedical and biosensor applications. Phys. Chem. Chem. Phys. 2016, 18, 12035–12042.
Zhao, Z. Y.; Zharnikov, M. Elastic properties of poly(ethylene glycol) nanomembranes and respective implications. Membranes 2022, 12, 509.
Zhao, Z. Y.; Das, S.; Zharnikov, M. Rational design of porous poly(ethylene glycol) films as a matrix for ssDNA immobilization and hybridization. Bioengineering 2022, 9, 414.
Zhao, Z. Y.; Zharnikov, M. Exploiting epoxy-rich poly(ethylene glycol) films for highly selective ssDNA sensing via electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 2023, 25, 26538–26548.
Meyerbröker, N.; Li, Z. A.; Eck, W.; Zharnikov, M. Biocompatible nanomembranes based on PEGylation of cross-linked self-assembled monolayers. Chem. Mater. 2012, 24, 2965–2972.
Turchanin, A.; Gölzhäuser, A. Carbon nanomembranes. Adv. Mater. 2016, 28, 6075–6103.
Scherr, J.; Parey, K.; Klusch, N.; Murphy, B. J.; Balser, S.; Neuhaus, A.; Zickermann, V.; Kühlbrandt, W.; Terfort, A.; Rhinow, D. Self-perforated hydrogel nanomembranes facilitate structural analysis of proteins by electron cryo-microscopy. ACS Nano 2017, 11, 6467–6473.
Rodríguez-San-Miguel, D.; Montoro, C.; Zamora, F. Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2020, 49, 2291–2302.
Scherr, J.; Tang, Z. A.; Küllmer, M.; Balser, S.; Scholz, A. S.; Winter, A.; Parey, K.; Rittner, A.; Grininger, M.; Zickermann, V. et al. Smart molecular nanosheets for advanced preparation of biological samples in electron cryo-microscopy. ACS Nano 2020, 14, 9972–9978.
Balser, S.; Zhao, Z. Y.; Zharnikov, M.; Terfort, A. Effect of the crosslinking agent on the biorepulsive and mechanical properties of polyglycerol membranes. Colloids Surf. B: Biointerfaces 2023, 225, 113271.
Meyerbröker, N.; Zharnikov, M. Ultraflexible, freestanding nanomembranes based on poly(ethylene glycol). Adv. Mater. 2014, 26, 3328–3332.
Burdinski, D.; Blees, M. H. Thiosulfate- and thiosulfonate-based etchants for the patterning of gold using microcontact printing. Chem. Mater. 2007, 19, 3933–3944.
Green, T. A. Gold etching for microfabrication. Gold Bull. 2014, 47, 205–216.
Wilson, N. R.; Pandey, P. A.; Beanland, R.; Young, R. J.; Kinloch, I. A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J. P.; York, S. J. et al. Graphene oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 2009, 3, 2547–2556.
Small, M. K.; Vlassak, J. J.; Powell, S. F.; Daniels, B. J.; Nix, W. D. Accuracy and reliability of bulge test experiments. MRS Online Proc. Lib. 1993, 308, 159–164.
Zamprogno, P.; Thoma, G.; Cencen, V.; Ferrari, D.; Putz, B.; Michler, J.; Fantner, G. E.; Guenat, O. T. Mechanical properties of soft biological membranes for organ-on-a-chip assessed by bulge test and AFM. ACS Biomater. Sci. Eng. 2021, 7, 2990–2997.
Khan, M.; Schuster, S.; Zharnikov, M. Effect of humidity on electrical conductivity of pristine and nanoparticle-loaded hydrogel nanomembranes. J. Phys. Chem. C 2015, 119, 14427–14433.
Zhao, Z. Y.; Das, S.; Zharnikov, M. Poly(ethylene glycol)-fullerene composite films and free-standing nanosheets for flexible electronic devices and sensors. ACS Appl. Nano Mater. 2023, 6, 2151–2161.
Jehoulet, C.; Obeng, Y. S.; Kim, Y. T.; Zhou, F. M.; Bard, A. J. Electrochemistry and Langmuir trough studies of C60 and C70 films. J. Am. Chem. Soc. 1992, 114, 4237–4247.
Bond, A. M.; Miao, W. J.; Raston, C. L. Identification of processes that occur after reduction and dissolution of C60 adhered to gold, glassy carbon, and platinum electrodes placed in acetonitrile (electrolyte) solution. J. Phys. Chem. B 2000, 104, 2320–2329.
Meyerbröker, N.; Zharnikov, M. Modification and patterning of nanometer-thin poly(ethylene glycol) films by electron irradiation. ACS Appl. Mater. Interfaces 2013, 5, 5129–5138.
Meyerbröker, N.; Zharnikov, M. Hydrogel nanomembranes as templates for patterned deposition of nanoparticles on arbitrary substrates. ACS Appl. Mater. Interfaces 2014, 6, 14729–14735.
Zhao, Z. Y.; Yan, R.; Zharnikov, M. The effect of ultraviolet light on biorepulsive hydrogel poly(ethylene glycol) films. ACS Appl. Polym. Mater. 2021, 3, 3446–3454.
Holland, W. R.; Hall, D. G. Frequency shifts of an electric-dipole resonance near a conducting surface. Phys. Rev. Lett. 1984, 52, 1041–1044.
Leitner, A.; Zhao, Z. S.; Brunner, H.; Aussenegg, F. R.; Wokaun, A. Optical properties of a metal island film close to a smooth metal surface. Appl. Opt. 1993, 32, 102–110.
Aussenegg, F. R.; Brunner, H.; Leitner, A.; Lobmaier, C.; Schalkhammer, T.; Pittner, F. The metal island coated swelling polymer over mirror system (MICSPOMS): A new principle for measuring ionic strength. Sens. Actuators B: Chem. 1995, 29, 204–209.
Krishnakumar, T.; Jayaprakash, R.; Singh, V. N.; Mehta, B. R.; Phani, A. R. Synthesis and characterization of tin oxide nanoparticle for humidity sensor applications. J. Nano Res. 2008, 4, 91–101.
Pissis, P.; Kyritsis, A. Electrical conductivity studies in hydrogels. Solid State Ionics 1997, 97, 105–113.
Rittersma, Z. M. Recent achievements in miniaturised humidity sensors-a review of transduction techniques. Sens. Actuators A: Phys. 2002, 96, 196–210.
Yeh, H. W.; Ai, H. W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu. Rev. Anal. Chem. 2019, 12, 129–150.
Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.; Li, V. Y. C.; Chen, H. M.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. W. Diagnosing COVID-19: The disease and tools for detection. ACS Nano 2020, 14, 3822–3835.
Quijano-Rubio, A.; Yeh, H. W.; Park, J.; Lee, H.; Langan, R. A.; Boyken, S. E.; Lajoie, M. J.; Cao, L. X.; Chow, C. M.; Miranda, M. C. et al. De novo design of modular and tunable protein biosensors. Nature 2021, 591, 482–487.
Rao, A. N.; Grainger, D. W. Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomater. Sci. 2014, 2, 436–471.
Zhang, X. N.; Hu, H. M. DNA Molecules site-specific immobilization and their applications. Cent. Eur. J. Chem. 2014, 12, 977–993.
Du, Y.; Dong, S. J. Nucleic acid biosensors: Recent advances and perspectives. Anal. Chem. 2017, 89, 189–215.
Babaei, A.; Pouremamali, A.; Rafiee, N.; Sohrabi, H.; Mokhtarzadeh, A.; de la Guardia, M. Genosensors as an alternative diagnostic sensing approaches for specific detection of virus species: A review of common techniques and outcomes. TrAC Trends Anal. Chem. 2022, 155, 116686.
Zhao, J.; Di, Z. H.; Li, L. L. Spatiotemporally selective molecular imaging via upconversion luminescence-controlled, DNA-based biosensor technology. Angew. Chem., Int. Ed. 2022, 61, e202204277.
Petrovykh, D. Y.; Kimura-Suda, H.; Whitman, L. J.; Tarlov, M. J. Quantitative analysis and characterization of DNA immobilized on gold. J. Am. Chem. Soc. 2003, 125, 5219–5226.
Petrovykh, D. Y.; Pérez-Dieste, V.; Opdahl, A.; Kimura-Suda, H.; Sullivan, J. M.; Tarlov, M. J.; Himpsel, F. J.; Whitman, L. J. Nucleobase orientation and ordering in films of single-stranded DNA on gold. J. Am. Chem. Soc. 2006, 128, 2–3.
Opdahl, A.; Petrovykh, D. Y.; Kimura-Suda, H.; Tarlov, M. J.; Whitman, L. J. Independent control of grafting density and conformation of single-stranded DNA brushes. Proc. Natl. Acad. Sci. USA 2007, 104, 9–14.
Schreiner, S. M.; Hatch, A. L.; Shudy, D. F.; Howard, D. R.; Howell, C.; Zhao, J. L.; Koelsch, P.; Zharnikov, M.; Petrovykh, D. Y.; Opdahl, A. Impact of DNA-surface interactions on the stability of DNA hybrids. Anal. Chem. 2011, 83, 4288–4295.
Howell, C.; Jeyachandran, Y. L.; Koelsch, P.; Zharnikov, M. Orientation and ordering in sequence- and length-mismatched surface-bound DNA hybrids. J. Phys. Chem. C 2012, 116, 11133–11140.
Stuparu, M. C.; Khan, A. Thiol-epoxy “click” chemistry: Application in preparation and postpolymerization modification of polymers. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3057–3070.
Yang, B. Q.; Gordiyenko, K.; Schäfer, A.; Dadfar, S. M. M.; Yang, W. W.; Riehemann, K.; Kumar, R.; Niemeyer, C. M.; Hirtz, M. Fluorescence imaging study of film coating structure and composition effects on DNA hybridization. Adv. NanoBiomed Res. 2023, 3, 2200133.
Ballav, N.; Koelsch, P.; Zharnikov, M. Orientation and ordering in monomolecular films of sulfur-modified homo-oligonucleotides on gold. J. Phys. Chem. C 2009, 113, 18312–18320.
Han, H. W.; Sabani, N. B.; Nobusawa, K.; Takei, F.; Nakatani, K.; Yamashita, I. On-demand ligand-base DNA sensor with electrochemical impedance spectroscopy. Anal. Chem. 2023, 95, 9729–9733.
Kivlehan, F.; Paolucci, M.; Brennan, D.; Ragoussis, I.; Galvin, P. Three-dimensional hydrogel structures as optical sensor arrays, for the detection of specific DNA sequences. Anal. Biochem. 2012, 421, 1–8.
Jamaluddin, R. Z. A. R.; Tan, L. L.; Chong, K. F.; Heng, L. Y. An electrochemical DNA biosensor fabricated from graphene decorated with graphitic nanospheres. Nanotechnology 2020, 31, 485501.
Raymundo-Pereira, P. A.; de Oliveira Pedro, R.; Carr, O.; Melendez, M. E.; Gobbi, A. L.; de Oliveira Piazzetta, M. H.; Carvalho, A. L.; Reis, R. M.; Miranda, P. B.; Oliveira, O. N. Jr. Influence of the molecular orientation and ionization of self-assembled monolayers in biosensors: Application to genosensors of prostate cancer antigen 3. J. Phys. Chem. C 2021, 125, 498–506.
Lee, C. Y.; Nguyen, P. C. T.; Grainger, D. W.; Gamble, L. J.; Castner, D. G. Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers. Anal. Chem. 2007, 79, 4390–4400.
Howell, C.; Zhao, J. L.; Koelsch, P.; Zharnikov, M. Hybridization in ssDNA films-a multi-technique spectroscopy study. Phys. Chem. Chem. Phys. 2011, 13, 15512–15522.
Li, S. G.; Dai, J.; Zhu, M.; Arroyo-Currás, N.; Li, H. X.; Wang, Y. Y.; Wang, Q.; Lou, X. D.; Kippin, T. E.; Wang, S. X. et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats. ACS Nano 2023, 17, 18525–18538.
Zhao, Z. Y.; Zharnikov, M. Gold nanoparticle-loaded porous poly(ethylene glycol) nanosheets for electrochemical detection of H2O2. Nanomaterials 2023, 13, 3137.
Veal, E. A.; Day, A. M.; Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol. Cell 2007, 26, 1–14.
Maji, S. K.; Sreejith, S.; Mandal, A. K.; Ma, X.; Zhao, Y. L. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: A hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl. Mater. Interfaces 2014, 6, 13648–13656.
Dong, Z. L.; Yang, Z. J.; Hao, Y.; Feng, L. Z. Fabrication of H2O2-driven nanoreactors for innovative cancer treatments. Nanoscale 2019, 11, 16164–16186.
Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.
An, H. J.; Guo, C. H.; Li, D. D.; Liu, R. F.; Xu, X. Q.; Guo, J. W.; Ding, J.; Li, J. J.; Chen, W.; Zhang, J. X. Hydrogen peroxide-activatable nanoparticles for luminescence imaging and in situ triggerable photodynamic therapy of cancer. ACS Appl. Mater. Interfaces 2020, 12, 17230–17243.
Ahmad, T.; Iqbal, A.; Halim, S. A.; Uddin, J.; Khan, A.; El Deeb, S.; Al-Harrasi, A. Recent advances in electrochemical sensing of hydrogen peroxide (H2O2) released from cancer cells. Nanomaterials 2022, 12, 1475.
Feng, J. J.; Zhao, G.; Xu, J. J.; Chen, H. Y. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal. Biochem. 2005, 342, 280–286.
Chen, L.; Lu, G. X. Direct electrochemistry and electrocatalysis of hybrid film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin. J. Electroanal. Chem. 2006, 597, 51–59.
Gao, F. X.; Yuan, R.; Chai, Y. Q.; Chen, S. H.; Cao, S. R.; Tang, M. Y. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on nano-Au/Thi/poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode. J. Biochem. Biophys. Methods 2007, 70, 407–413.
Yagati, A. K.; Lee, T.; Min, J. H.; Choi, J. W. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Colloids Surf. B: Biointerfaces 2012, 92, 161–167.
Bai, Z. H.; Li, G. Y.; Liang, J. T.; Su, J.; Zhang, Y.; Chen, H. Z.; Huang, Y.; Sui, W.; Zhao, Y. X. Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells. Biosens. Bioelectron. 2016, 82, 185–194.
Chen, S. Y.; Xie, Y. X.; Guo, X. J.; Sun, D. P. Self-supporting electrochemical sensors for monitoring of cell-released H2O2 based on metal nanoparticle/MOF nanozymes. Microchem. J. 2022, 181, 107715.
Zhang, Y. W.; Chen, Q.; Guo, A.; Wang, X. L.; Wang, Y.; Long, Y.; Fan, G. Y. Carbon-nanosheet-driven spontaneous deposition of Au nanoparticles for efficient electrochemical utilizations toward H2O2 generation and detection. Chem. Eng. J. 2022, 445, 136586.
Yuan, J.; Chen, Q.; Xiao, Y. L.; Li, D. D.; Jiang, X. M.; Wu, P. Cobalt-based layered double hydroxide nanosheet-supported AuNPs for high performance electrochemical H2O2 detection. Appl. Surf. Sci. 2023, 630, 157463.
Gholami, M.; Koivisto, B. A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into Nafion. Appl. Surf. Sci. 2019, 467–468, 112–118.
Xia, C.; He, W.; Yang, X. F.; Gao, P. F.; Zhen, S. J.; Li, Y. F.; Huang, C. Z. Plasmonic hot-electron-painted Au@Pt nanoparticles as efficient electrocatalysts for detection of H2O2. Anal. Chem. 2022, 94, 13440–13446.
Giaretta, J. E.; Duan, H. W.; Oveissi, F.; Farajikhah, S.; Dehghani, F.; Naficy, S. Flexible sensors for hydrogen peroxide detection: A critical review. ACS Appl. Mater. Interfaces 2022, 14, 20491–20505.
Moldosanov, K.; Bykov, A.; Kairyev, N.; Khodzitsky, M.; Kropotov, G.; Lelevkin, V.; Meglinski, I.; Postnikov, A.; Shakhmin, A. Terahertz-to-infrared converters for imaging the human skin cancer: Challenges and feasibility. J. Med. Imaging 2023, 10, 023501.