AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Theoretical investigations on hydroxyl carbon precursor fueled growth of graphene on transition metal substrates

Chaojie Yu1,2,§Haiyang Liu1,3,§Xiaoli Sun1,§( )Jianjian Shi4Zhiyu Jing1,5Xiucai Sun1Yuqing Song1Wanjian Yin1,6Guangping Zhang2( )Luzhao Sun1( )Zhongfan Liu1,3( )
Beijing Graphene Institute, Beijing 100095, China
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
Academy for Advanced Interdisciplinary Research, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China

§ Chaojie Yu, Haiyang Liu, and Xiaoli Sun contributed equally to this work.

Show Author Information

Graphical Abstract

The cleavage barriers of CH3OH on transition metal substrates are slightly lower than CH4, and the CO produced by methanol cracking can improve the growth quality of graphene and promote the formation and retention of perfect six-membered rings. Thus methanol as a carbon source can indeed reduce the growth temperature of graphene and avoid the generation of wrinkles.

Abstract

Transition metal catalyzed chemical vapor deposition (CVD) is considered as the most promising approach to synthesize high-quality graphene films, and low-temperature growth of defect-free graphene films is long-term challenged because of the high energy barrier for precursor dissociation and graphitization. Reducing the growth temperature can also bring advantages on wrinkle-free graphene films owing to the minimized thermal expansion coefficient mismatch. This work focuses on density functional theory (DFT) calculations of the carbon source precursor with hydroxyl group, especially CH3OH, on low-temperature CVD growth of graphene on Cu and CuNi substrate. We calculated all the possible cleavage paths for CH3OH on transition metal substrates. The results show that, firstly, the cleavage barriers of CH3OH on transition metal substrates are slightly lower than those of CH4, and once CO appears, it is difficult to break the C–O bond. Secondly, the CO promotes a better formation and retention of perfect rings in the early stage of graphene nucleation and reduces the edge growth barriers. Thirdly, these deoxidation barriers of CO are reduced after CO participates in graphene edge growth. This paper provides a strategy for the low-temperature growth of wrinkles-free graphene on transition metal substrates using CH3OH.

Electronic Supplementary Material

Download File(s)
6882_ESM.pdf (2.3 MB)

References

[1]

Zhu, W. J.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H. G.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.

[2]

Chen, S. S.; Li, Q. Y.; Zhang, Q. M.; Qu, Y.; Ji, H. X.; Ruoff, R. S.; Cai, W. W. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 2012, 23, 365701.

[3]

Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C. X.; Li, J. Y.; Liu, M. X.; Wu, J. X.; Qi, Y.; Dang, W. H. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 2017, 11, 12337–12345.

[4]

Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

[5]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[6]

Geng, D. C.; Wu, B.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Jiang, L.; Hu, W. P.; Liu, Y. Q. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. USA 2012, 109, 7992–7996.

[7]

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

[8]

Pang, J. B.; Bachmatiuk, A.; Fu, L.; Yan, C. L.; Zeng, M. Q.; Wang, J.; Trzebicka, B.; Gemming, T.; Eckert, J.; Rummeli, M. H. Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J. Phys. Chem. C 2015, 119, 13363–13368.

[9]

Han, Z.; Kimouche, A.; Kalita, D.; Allain, A.; Arjmandi-Tash, H.; Reserbat-Plantey, A.; Marty, L.; Pairis, S.; Reita, V.; Bendiab, N. et al. Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Adv. Funct. Mater. 2014, 24, 964–970.

[10]

Han, G. H.; Güneş, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H. J.; Choi, J. Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144–4148.

[11]

Wang, M. H.; Luo, D.; Wang, B.; Ruoff, R. S. Synthesis of large-area single-crystal graphene. Trends Chem. 2021, 3, 15–33.

[12]

Zhang, J. C.; Lin, L.; Jia, K. C.; Sun, L. Z.; Peng, H. L.; Liu, Z. F. Controlled growth of single-crystal graphene films. Adv. Mater. 2020, 32, 1903266.

[13]

Wang, M. H.; Huang, M.; Luo, D.; Li, Y. Q.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M. R.; Chatterjee, S. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 2021, 596, 519–524.

[14]

Vasić, B.; Zurutuza, A.; Gajić, R. Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene. Carbon 2016, 102, 304–310.

[15]

Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

[16]

Choi, J. K.; Kwak, J.; Park, S. D.; Yun, H. D.; Kim, S. Y.; Jung, M.; Kim, S. Y.; Park, K.; Kang, S.; Kim, S. D. et al. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. ACS Nano 2015, 9, 679–686.

[17]

Zhang, X. F.; Wu, T. R.; Jiang, Q.; Wang, H. S.; Zhu, H. L.; Chen, Z. Y.; Jiang, R.; Niu, T. C.; Li, Z. J.; Zhang, Y. W. et al. Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni(111) film at 750 °C via chemical vapor deposition. Small 2019, 15, 1805395.

[18]

Yuan, G. W.; Lin, D. J.; Wang, Y.; Huang, X. L.; Chen, W.; Xie, X. D.; Zong, J. Y.; Yuan, Q. Q.; Zheng, H.; Wang, D. et al. Proton-assisted growth of ultra-flat graphene films. Nature 2020, 577, 204–208.

[19]

Deng, B.; Xin, Z. W.; Xue, R. W.; Zhang, S. S.; Xu, X. Z.; Gao, J.; Tang, J. L.; Qi, Y.; Wang, Y. N.; Zhao, Y. et al. Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Sci. Bull. 2019, 64, 659–668.

[20]

Wang, J. B.; Ren, Z.; Hou, Y.; Yan, X. L.; Liu, P. Z.; Zhang, H.; Zhang, H. X.; Guo, J. J. A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Mater. 2020, 35, 193–208.

[21]

Kim, H. K.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 2012, 6, 3614–3623.

[22]

Robinson, M. B.; Li, D.; Rathz, T. J.; Williams, G. Undercooling, liquid separation and solidification of Cu–Co alloys. J. Mater. Sci. 1999, 34, 3747–3753.

[23]

Sugime, H.; D'Arsié, L.; Esconjauregui, S.; Zhong, G. F.; Wu, X. Y.; Hildebrandt, E.; Sezen, H.; Amati, M.; Gregoratti, L.; Weatherup, R. S. et al. Low temperature growth of fully covered single-layer graphene using a CoCu catalyst. Nanoscale 2017, 9, 14467–14475.

[24]

Liang, Y. Q.; Lei, Q.; Zhang, X. K.; Jiang, D.; Li, Y. P. Microstructure evolution and properties of a Cu-5 wt% Mo alloy with high conductivity and high anti-soften temperature. Mater. Today Commun. 2022, 32, 104134.

[25]

Yutomo, E. B.; Noor, F. A.; Winata, T.; Yuliarto, B.; Abdullah, H. Theoretical insights on the effect of alloying with Co in the mechanism of graphene growth on a Cu–Co(111) catalyst. Appl. Surf. Sci. 2023, 631, 157500.

[26]

Li, Y. L. Z.; Sun, L. Z.; Liu, H. Y.; Wang, Y. C.; Liu, Z. F. Rational design of binary alloys for catalytic growth of graphene via chemical vapor deposition. Catalysts 2020, 10, 1305.

[27]

Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 2011, 49, 4204–4210.

[28]

Aronowitz, D.; Naegeli, D. W.; Glassman, I. Kinetics of the pyrolysis of methanol. J. Phys. Chem. 1977, 81, 2555–2559.

[29]

Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y. P.; Li, H. F.; Ji, H. X.; Ruoff, R. S. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 2012, 6, 2471–2476.

[30]

Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.

[31]

Kim, K. B.; Lee, C. M.; Choi, J. Catalyst-free direct growth of triangular nano-graphene on all substrates. J. Phys. Chem. C 2011, 115, 14488–14493.

[32]

Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 2010, 4, 4206–4210.

[33]

Miyasaka, Y.; Nakamura, A.; Temmyo, J. Graphite thin films consisting of nanograins of multilayer graphene on sapphire substrates directly grown by alcohol chemical vapor deposition. Jpn. J. Appl. Phys. 2011, 50, 04DH12.

[34]

Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.

[35]
Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, 2007.
[36]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[37]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[38]

Zhang, W. H.; Wu, P.; Li, Z. Y.; Yang, J. L. First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 2011, 115, 17782–17787.

[39]

Huang, M.; Biswal, M.; Park, H. J.; Jin, S.; Qu, D. S.; Hong, S.; Zhu, Z. L.; Qiu, L.; Luo, D.; Liu, X. C. et al. Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano 2018, 12, 6117–6127.

[40]

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

[41]

Li, Y. F.; Li, M. C.; Wang, T.; Bai, F.; Yu, Y. X. DFT study on the atomic-scale nucleation path of graphene growth on the Cu(111) surface. Phys. Chem. Chem. Phys. 2014, 16, 5213–5220.

[42]

Shu, H. B.; Chen, X. S.; Tao, X. M.; Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 2012, 6, 3243–3250.

[43]

Sun, X. L.; Yu, C. J.; Yang, Y. J.; Li, Z. H.; Shi, J. J.; Yin, W. J.; Li. Z. F. Theoretical investigations on the growth of graphene by oxygen-assisted chemical vapor deposition. Nano Res. 2024, 17, 4645–4650.

[44]

Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T. A new theoretical approach to adsorption-desorption behavior of Ga on GaAs surfaces. Surf. Sci. 2001, 493, 178–181.

[45]

Van De Walle, C. G.; Neugebauer, J. First-principles surface phase diagram for hydrogen on GaN surfaces. Phys. Rev. Lett. 2002, 88, 066103.

[46]

Reuter, K.; Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 2001, 65, 035406.

[47]

Shu, H. B.; Tao, X. M.; Ding, F. What are the active carbon species during graphene chemical vapor deposition growth. Nanoscale 2015, 7, 1627–1634.

Nano Research
Pages 10235-10241
Cite this article:
Yu C, Liu H, Sun X, et al. Theoretical investigations on hydroxyl carbon precursor fueled growth of graphene on transition metal substrates. Nano Research, 2024, 17(11): 10235-10241. https://doi.org/10.1007/s12274-024-6882-0
Topics:

176

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 May 2024
Revised: 13 July 2024
Accepted: 14 July 2024
Published: 30 August 2024
© Tsinghua University Press 2024
Return