AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting C2H6/C2H4 separation via the precise electrostatic modulation of synthetic 1D channel at atomic level

Salamanti Ainiwaner1Hengcong Huang1Jia-Jia Zheng2( )Fengting Li1Xue-Tong Yang3,4Yang-Yang Guo3,4Fangli Yuan3,4Ming-Shui Yao3,4( )Yifan Gu1( )
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
Skate Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

The electrostatic modulation of pore surface at the atomic level can boost the C2H6/C2H4 adsorption selectivity in the one dimensioned (1-D) channels.

Abstract

The regulation of gas sorption via simple pore modification is crucial to molecular recognition and chemical separation. Herein, a rational pore surface electrostatic modulation in synthetic one dimensioned (1D) channel is demonstrated to boost ethane/ethylene (C2H6/C2H4) selectivity for one-step extraction of C2H4 from C2H6/C2H4 mixtures. Through the precise modulation of the surface charge arrangement with negatively charged moieties in the 1D channel of a metal–organic framework (MOF), enhanced C2H6–host framework and decreased C2H4–host framework electrostatic interactions were obtained, which resulted in an obvious improvement in adsorption selectivity. Furthermore, the breakthrough separation performance rendered the obtained MOF an efficient adsorbent for C2H4 purification from C2H6/C2H4 mixture. The combined detail theoretical studies prove that the gas sorption selectivity is remarkably sensitive to framework electrostatic change even in the case of pore surface modification at the atomic level. These results are of fundamental importance to the design of porous materials for challenging separation tasks.

Electronic Supplementary Material

Download File(s)
6883_ESM.pdf (5.2 MB)

References

[1]

Di, Z. Y.; Liu, C. P.; Pang, J. D.; Zou, S. X.; Ji, Z. Y.; Hu, F. L.; Chen, C.; Yuan, D. Q.; Hong, M. C.; Wu, M. Y. A metal–organic framework with nonpolar pore surfaces for the one-step acquisition of C2H4 from a C2H4 and C2H6 mixture. Angew. Chem., Int. Ed. 2022, 61, e202210343.

[2]

Corma, A.; Corresa, E.; Mathieu, Y.; Sauvanaud, L.; Al-Bogami, S.; Al-Ghrami, M. S.; Bourane, A. Crude oil to chemicals: Light olefins from crude oil. Catal. Sci. Technol. 2017, 7, 12–46.

[3]

Wang, H.; Liu, Y. L.; Li, J. Designer metal–organic frameworks for size-exclusion-based hydrocarbon separations: Progress and challenges. Adv. Mater. 2020, 32, 2002603.

[4]

Qazvini, O. T.; Babarao, R.; Shi, Z. L.; Zhang, Y. B.; Telfer, S. G. A robust ethane-trapping metal–organic framework with a high capacity for ethylene purification. J. Am. Chem. Soc. 2019, 141, 5014–5020.

[5]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[6]

Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal–organic framework materials for gas separation. Chem 2020, 6, 337–363.

[7]

Li, L. B.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S. C.; Wu, H.; Li, J. P.; Zhou, W.; Chen, B. L. Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites. Science 2018, 362, 443–446.

[8]

Li, Y. P.; Zhao, Y. N.; Li, S. N.; Yuan, D. Q.; Jiang, Y. C.; Bu, X. H.; Hu, M. C.; Zhai, Q. G. Ultrahigh-uptake capacity-enabled gas separation and fruit preservation by a new single-walled nickel–organic framework. Adv. Sci. 2021, 8, 2003141.

[9]

Ye, Y. X.; Xie, Y.; Shi, Y. S.; Gong, L. S.; Phipps, J.; Al-Enizi, A. M.; Nafady, A.; Chen, B. L.; Ma, S. Q. A microporous metal–organic framework with unique aromatic pore surfaces for high performance C2H6/C2H4 separation. Angew. Chem., Int. Ed. 2023, 62, e202302564.

[10]

Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610.

[11]

Li, B. Y.; Zhang, Y. M.; Krishna, R.; Yao, K. X.; Han, Y.; Wu, Z. L.; Ma, D. X.; Shi, Z.; Pham, T.; Space, B. et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 2014, 136, 8654–8660.

[12]

Zhang, L.; Li, L. B.; Hu, E. L.; Yang, L.; Shao, K.; Yao, L. J.; Jiang, K.; Cui, Y. J.; Yang, Y.; Li, B. et al. Boosting ethylene/ethane separation within copper(I)-chelated metal–organic frameworks through tailor-made aperture and specific π-complexation. Adv. Sci. 2020, 7, 1901918.

[13]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.

[14]

Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 2015, 527, 357–361.

[15]

Carrington, E. J.; McAnally, C. A.; Fletcher, A. J.; Thompson, S. P.; Warren, M.; Brammer, L. Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 2017, 9, 882–889.

[16]

Zhou, D. D.; Zhang, X. W.; Mo, Z. W.; Xu, Y. Z.; Tian, X. Y.; Li, Y.; Chen, X. M.; Zhang, J. P. Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks. Energy Chem. 2019, 1, 100016.

[17]

Gu, C.; Hosono, N.; Zheng, J. J.; Sato, Y.; Kusaka, S.; Sakaki, S.; Kitagawa, S. Design and control of gas diffusion process in a nanoporous soft crystal. Science 2019, 363, 387–391.

[18]

Ju, Q. Y.; Zheng, J. J.; Xu, L.; Jiang, H. Y.; Xue, Z. Q.; Bai, L.; Guo, Y. Y.; Yao, M. S.; Zhu, T. Y. Enhanced carbon capture with motif-rich amino acid loaded defective robust metal–organic frameworks. Nano Res. 2024, 17, 2004–2010.

[19]

Li, Y. H.; Xiao, J. Z.; Guo, Y. Y.; Han, N.; Yuan, F. L.; Chen, Y. F.; Yao, M. S. Dynamic apertures with diffusion-regulatory functionality in soft porous crystals: A key to solving the century puzzle on isotopologues separation. Nano Res. 2023, 16, 3254–3255.

[20]

Xiang, H.; Ameen, A.; Shang, J.; Jiao, Y. L.; Gorgojo, P.; Siperstein, F. R.; Fan, X. L. Synthesis and modification of moisture-stable coordination pillared-layer metal–organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation. Microporous Mesoporous Mater. 2020, 293, 109784.

[21]

Shang, S. S.; Yang, C.; Wang, C. G.; Qin, J. S.; Li, Y.; Gu, Q. F.; Shang, J. Transition-metal-containing porphyrin metal–organic frameworks as π-backbonding adsorbents for NO2 removal. Angew. Chem., Int. Ed. 2020, 59, 19680–19683.

[22]

Lv, D. F.; Zhou, P. J.; Xu, J. H.; Tu, S.; Xu, F.; Yan, J.; Xi, H. X.; Yuan, W. B.; Fu, Q.; Chen, X. et al. Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chem. Eng. J. 2022, 431, 133208.

[23]

Wang, L. Y.; Huang, H. C.; Zhang, X. Y.; Zhao, H. S.; Li, F. T.; Gu, Y. F. Designed metal–organic frameworks with potential for multi-component hydrocarbon separation. Coord. Chem. Rev. 2023, 484, 215111.

[24]

Lin, X.; Yang, Y. S.; Wang, X.; Lin, S.; Bao, Z. B.; Zhang, Z. J.; Xiang, S. C. Functionalized metal–organic and hydrogen-bonded organic frameworks for C2H4/C2H6 separation. Sep. Purif. Technol. 2024, 330, 125252.

[25]

Wang, G. D.; Krishna, R.; Li, Y. Z.; Shi, W. J.; Hou, L.; Wang, Y. Y.; Zhu, Z. H. Boosting ethane/ethylene separation by MOFs through the amino-functionalization of pores. Angew. Chem., Int. Ed. 2022, 61, e202213015.

[26]

Lin, R. B.; Wu, H.; Li, L. B.; Tang, X. L.; Li, Z. Q.; Gao, J. K.; Cui, H.; Zhou, W.; Chen, B. L. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal–organic frameworks. J. Am. Chem. Soc. 2018, 140, 12940–12946.

[27]

Wang, X.; Niu, Z.; Al-Enizi, A. M.; Nafady, A.; Wu, Y. F.; Aguila, B.; Verma, G.; Wojtas, L.; Chen, Y. S.; Li, Z. et al. Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. J. Mater. Chem. A 2019, 7, 13585–13590.

[28]

Yang, H. J.; Wang, Y. X.; Krishna, R.; Jia, X. X.; Wang, Y.; Hong, A. N.; Dang, C.; Castillo, H. E.; Bu, X. H.; Feng, P. Y. Pore-space-partition-enabled exceptional ethane uptake and ethane-selective ethane–ethylene separation. J. Am. Chem. Soc. 2020, 142, 2222–2227.

[29]

Myers, A. L.; Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChE J. 1965, 11, 121–127.

[30]

Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Efficient purification of ethene by an ethane-trapping metal–organic framework. Nat. Commun. 2015, 6, 8697.

[31]

Geng, S. B.; Lin, E.; Li, X.; Liu, W. S.; Wang, T.; Wang, Z. F.; Sensharma, D.; Darwish, S.; Andaloussi, Y. H.; Pham, T. et al. Scalable room-temperature synthesis of highly robust ethane-selective metal–organic frameworks for efficient ethylene purification. J. Am. Chem. Soc. 2021, 143, 8654–8660.

[32]

Xiang, H.; Ameen, A.; Gorgojo, P.; Siperstein, F. R.; Holmes, S. M.; Fan, X. L. Selective adsorption of ethane over ethylene on M(bdc)(ted)0.5 (M = Co, Cu, Ni, Zn) metal–organic frameworks (MOFs). Microporous Mesoporous Mater. 2020, 292, 109724.

[33]

Pires, J.; Fernandes, J.; Dedecker, K.; Gomes, J. R. B.; Pérez-Sánchez, G.; Nouar, F.; Serre, C.; Pinto, M. L. Enhancement of ethane selectivity in ethane-ethylene mixtures by perfluoro groups in Zr-based metal–organic frameworks. ACS Appl. Mater. Interfaces 2019, 11, 27410–27421.

[34]

Wang, Y. T.; Fu, M. Y.; Zhou, S. N.; Liu, H. Y.; Wang, X. K.; Fan, W. D.; Liu, Z. N.; Wang, Z. K.; Li, D. C.; Hao, H. G. et al. Guest-molecule-induced self-adaptive pore engineering facilitates purification of ethylene from ternary mixture. Chem 2022, 8, 3263–3274.

[35]

Wang, L. Y.; Wu, S. S.; Hu, J. B.; Jiang, Y. J.; Li, J. H.; Hu, Y. Q.; Han, Y.; Ben, T.; Chen, B. L.; Zhang, Y. B. A novel hydrophobic carborane-hybrid microporous material for reversed C2H6 adsorption and efficient C2H4/C2H6 separation under humid conditions. Chem. Sci. 2024, 15, 5653–5659.

[36]

Lian, X.; Liu, P. X.; Yuan, Y. C.; Pang, J. J.; Li, L.; Liu, S. S.; Yue, B.; Zhang, Y. H.; Li, L. B.; Xu, J. et al. Leveraging surface chemistry and pore shape engineering in a metal–organic framework for one-step olefin purification. Adv. Funct. Mater. 2024, 34, 2312150.

[37]

Ribeiro, R. P. P. L.; Camacho, B. C. R.; Lyubchyk, A.; Esteves, I. A. A. C.; Cruz, F. J. A. L.; Mota, J. P. B. Experimental and computational study of ethane and ethylene adsorption in the MIL-53(Al) metal organic framework. Microporous Mesoporous Mater. 2016, 230, 154–165.

[38]

Zhang, P. X.; Yang, L. F.; Liu, X.; Wang, J.; Suo, X.; Chen, L. Y.; Cui, X. L.; Xing, H. B. Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification. Nat. Commun. 2022, 13, 4928.

[39]

Jiang, H. Y.; Wang, Z. M.; Sun, X. Q.; Zeng, S. J.; Guo, Y. Y.; Bai, L.; Yao, M. S.; Zhang, X. P. Advanced materials for NH3 capture: Interaction sites and transport pathways. Nano-Micro Lett. 2024, 16, 228.

[40]

Gu, Y. F.; Zheng, J. J.; Otake, K. I.; Sakaki, S.; Ashitani, H.; Kubota, Y.; Kawaguchi, S.; Yao, M. S.; Wang, P.; Wang, Y. et al. Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture. Nat. Commun. 2023, 14, 4245.

Nano Research
Pages 10083-10087
Cite this article:
Ainiwaner S, Huang H, Zheng J-J, et al. Boosting C2H6/C2H4 separation via the precise electrostatic modulation of synthetic 1D channel at atomic level. Nano Research, 2024, 17(11): 10083-10087. https://doi.org/10.1007/s12274-024-6883-z
Topics:

544

Views

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 21 May 2024
Revised: 29 June 2024
Accepted: 15 July 2024
Published: 20 August 2024
© Tsinghua University Press 2024
Return