Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Little is known about the synthesis of colloidal ternary semiconductor magic-size clusters (MSCs) and quantum dots (QDs) in an aqueous environment. We report here the first synthesis of aqueous-phase CdSeS MSC-380 (displaying sharp optical absorption peaking at ~ 380 nm) at room temperature and QDs at elevated temperatures. The reaction contains CdCl2·2.5H2O, 3-mercaptopropionic acid (MPA, HS−(CH2)2−COOH), selenourea (SeU, NH2−C(Se)−NH2), and thioacetamide (TAA, CH3−C(S)−NH2). Prior to the nucleation and growth (N/G) of QDs, there are clusters formed at 25 °C. The prenucleation-stage clusters are the precursor compound of CdSeS MSC-380 (PC-380). The PC is relatively transparent in optical absorption; in the presence of a primary amine butylamine (BTA, CH3−(CH2)3−NH2), the PC transforms to absorbing CdSeS MSC-380. At 80 °C, the PC decreases and the N/G of CdSeS QDs appears. The present study paves the way to the aqueous-phase synthesis of ternary CdSeS MSCs and QDs, providing an in-depth understanding of the cluster formation in the prenucleation stage of CdSeS QDs.
Yu, K.; Schanze, K. S. Commemorating the nobel prize in chemistry 2023 for the discovery and synthesis of quantum dots. ACS Cent. Sci. 2023, 9, 1989–1992.
Manna, L. The bright and enlightening science of quantum dots. Nano Lett. 2023, 23, 9673–9676.
Franzl, T.; Klar, T. A.; Schietinger, S.; Rogach, A. L.; Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 2004, 4, 1599–1603.
Rogach, A. L.; Gaponik, N.; Lupton, J. M.; Bertoni, C.; Gallardo, D. E.; Dunn, S.; Pira, N. L.; Paderi, M.; Repetto, P.; Romanov, S. G. et al. Light-emitting diodes with semiconductor nanocrystals. Angew. Chem., Int. Ed. 2008, 47, 6538–6549.
Li, Y. L.; Duan, X.; Jing, L. H.; Yang, C. H.; Qiao, R. R.; Gao, M. Y. Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials 2011, 32, 1923–1931.
Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.
Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.
Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.
Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.
Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.
Wang, T. H.; Wang, Z.; Wang, S. L.; Chen, X. Q.; Luan, C. R.; Yu, K. Thermally-induced isomerization of prenucleation clusters during the prenucleation stage of CdTe quantum dots. Angew. Chem., Int. Ed. 2023, 62, e202310234.
Zhang, Y.; Chen, Q. Y.; Chen, S.; Wang, S. L.; Zhang, M.; Yu, K. Evolution of aqueous-phase CdTe magic-size clusters from their precursor compounds. J. Phys. Chem. Lett. 2023, 14, 5188–5193.
Li, Y.; Zhang, M.; He, L.; Rowell, N.; Kreouzis, T.; Zhang, C. C.; Wang, S. L.; Luan, C. R.; Chen, X. Q.; Zhang, S. J. et al. Manipulating reaction intermediates to aqueous-phase ZnSe magic-size clusters and quantum dots at room temperature. Angew. Chem., Int. Ed. 2022, 61, e202209615.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.
Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548–552.
Shen, H. B.; Wang, H. Z.; Chen, X.; Niu, J. Z.; Xu, W. W.; Li, X. M.; Jiang, X. D.; Du, Z. L.; Li, L. S. Size- and shape-controlled synthesis of CdTe and PbTe nanocrystals using tellurium dioxide as the tellurium precursor. Chem. Mater. 2010, 22, 4756–4761.
Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Aqueous phase synthesized CdSe nanoparticles with well-defined numbers of constituent atoms. J. Phys. Chem. C 2010, 114, 18834–18840.
Zhao, M.; Chen, Q. Y.; Zhu, Y. C.; Liu, Y. H.; Zhang, C. C.; Jiang, G.; Zhang, M.; Yu, K. Precursor compound enabled formation of aqueous-phase CdSe magic-size clusters at room temperature. Nano Res. 2022, 15, 2634–2642.
Chen, Q. Y.; Zhang, Y.; Chen, S.; Liu, Y. H.; Zhang, C. C.; Zhang, M.; Yu, K. Surface-ligand tuned reversible transformations in aqueous environments between CdSe magic-size clusters and their precursor compounds. Small 2024, 20, 2304277.
Wan, W. S.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Kreouzis, T.; Fan, H. S.; Huang, W.; Yu, K. Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nat. Commun. 2020, 11, 4199.
Chen, S.; Zhang, Y.; Chen, Q. Y.; Zhang, C. C.; Zhang, M.; Yu, K. Precursor compound-assisted formation of CdS magic-size clusters in aqueous solutions. Inorg. Chem. 2023, 62, 18290–18298.
Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmüller, A.; Weller, H. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B 1999, 103, 3065–3069.
Rogach, A. L.; Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem. Mater. 2000, 12, 2676–2685.
Ma, X. D.; Qian, X. F.; Yin, J.; Xi, H. A.; Zhu, Z. K. Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature. J. Colloid Interface Sci. 2002, 252, 77–81.
Bäumle, M.; Stamou, D.; Segura, J. M.; Hovius, R.; Vogel, H. Highly fluorescent streptavidin-coated CdSe nanoparticles: Preparation in water, characterization, and micropatterning. Langmuir 2004, 20, 3828–3831.
Chen, X. F.; Hutchison, J. L.; Dobson, P. J.; Wakefield, G. A one-step aqueous synthetic route to extremely small CdSe nanoparticles. J. Colloid Interface Sci. 2008, 319, 140–143.
Wang, Y. L.; Yang, H.; Xia, Z. Y.; Tong, Z. F.; Zhou, L. Y. One-pot synthesis of CdSe quantum dots using selenium dioxide as a selenium source in aqueous solution. Bull. Korean Chem. Soc. 2011, 32, 2316–2318.
Li, C. B.; Li, Z. J.; Yu, S.; Wang, G. X.; Wang, F.; Meng, Q. Y.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z. Interface-directed assembly of a simple precursor of [FeFe]-H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ. Sci. 2013, 6, 2597–2602.
Putri, L. K.; Ng, B. J.; Ong, W. J.; Lee, H. W.; Chang, W. S.; Mohamed, A. R.; Chai, S. P. Energy level tuning of CdSe colloidal quantum dots in ternary 0D-2D-2D CdSe QD/B-rGO/O-gC3N4 as photocatalysts for enhanced hydrogen generation. Appl. Catal. B: Environ. 2020, 265, 118592.
Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665–7673.
Zheng, J. S.; Huang, F.; Yin, S. G.; Wang, Y. J.; Lin, Z.; Wu, X. L.; Zhao, Y. B. Correlation between the photoluminescence and oriented attachment growth mechanism of CdS quantum dots. J. Am. Chem. Soc. 2010, 132, 9528–9530.
Aboulaich, A.; Billaud, D.; Abyan, M.; Balan, L.; Gaumet, J. J.; Medjadhi, G.; Ghanbaja, J.; Schneider, R. One-pot noninjection route to CdS quantum dots via hydrothermal synthesis. ACS Appl. Mater. Interfaces 2012, 4, 2561–2569.
Molaei, M.; Marandi, M.; Saievar-Iranizad, E.; Taghavinia, N.; Liu, B.; Sun, H. D.; Sun, X. W. Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. J. Lumin. 2012, 132, 467–473.
Baslak, C.; Aslan, E.; Patir, I. H.; Kus, M.; Ersoz, M. Photocatalytic hydrogen evolution based on mercaptopropionic acid stabilized CdS and CdTeS quantum dots. Int. J. Hydrogen Energy 2016, 41, 20523–20528.
Kaur, J.; Komal; Renu; Kumar, V.; Tikoo, K. B.; Bansal, S.; Kaushik, A.; Singhal, S. Glutathione modified fluorescent CdS QDs synthesized using environmentally benign pathway for detection of mercury ions in aqueous phase. J. Fluoresc. 2020, 30, 773–785.
Gao, M. Y.; Kirstein, S.; Möhwald, H.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 1998, 102, 8360–8363.
Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.
Zhang, H.; Wang, D. Y.; Yang, B.; Möhwald, H. Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures. J. Am. Chem. Soc. 2006, 128, 10171–10180.
Qian, H. F.; Dong, C. Q.; Weng, J. F.; Ren, J. C. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small 2006, 2, 747–751.
Shavel, A.; Gaponik, N.; Eychmüller, A. Factors governing the quality of aqueous CdTe nanocrystals: Calculations and experiment. J. Phys. Chem. B 2006, 110, 19280–19284.
Yang, W. H.; Li, W. W.; Dou, H. J.; Sun, K. Hydrothermal synthesis for high-quality CdTe quantum dots capped by cysteamine. Mater. Lett. 2008, 62, 2564–2566.
Idowu, M.; Lamprecht, E.; Nyokong, T. Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J. Photochem. Photobiol. A: Chem. 2008, 198, 7–12.
Duan, J. L.; Song, L. X.; Zhan, J. H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009, 2, 61–68.
Wang, Q. S.; Fang, T. T.; Liu, P.; Deng, B. H.; Min, X. M.; Li, X. Direct synthesis of high-quality water-soluble CdTe: Zn2+ quantum dots. Inorg. Chem. 2012, 51, 9208–9213.
Tan, J. W.; Liang, Y.; Wang, J. X.; Chen, J. F.; Sun, B. C.; Shao, L. Facile synthesis of CdTe-based quantum dots promoted by mercaptosuccinic acid and hydrazine. New J. Chem. 2015, 39, 4488–4493.
Huang, X. D.; Jing, L. H.; Kershaw, S. V.; Wei, X. J.; Ning, H. R.; Sun, X. D.; Rogach, A. L.; Gao, M. Y. Narrowing the photoluminescence of aqueous CdTe quantum dots via ostwald ripening suppression realized by programmed dropwise precursor addition. J. Phys. Chem. C 2018, 122, 11109–11118.
Pesters, O. M.; De Ranter, C. J. Kinetics of the hydrolysis of thioacetamide in alkaline solution. J. Chem. Soc. Perkin Trans. 2 1976, 1062–1065.
Thomson, J. W.; Nagashima, K.; Macdonald, P. M.; Ozin, G. A. From sulfur-amine solutions to metal sulfide nanocrystals: Peering into the oleylamine-sulfur black box. J. Am. Chem. Soc. 2011, 133, 5036–5041.
Wang, Y. J.; Liu, Z. K.; Huo, N. J.; Li, F.; Gu, M. F.; Ling, X. F.; Zhang, Y. N.; Lu, K. Y.; Han, L.; Fang, H. H. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136.