AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Development of aqueous-phase CdSeS magic-size clusters at room temperature and quantum dots at elevated temperatures

Yao Jiang1Zhe Wang2Shasha Wang2Chunchun Zhang3Chaoran Luan4Xiaoqin Chen2( )Kui Yu1,2( )
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, China
Analytical & Testing Center, Sichuan University, Chengdu 610065, China
College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
Show Author Information

Graphical Abstract

The approach to the development of aqueous-phase CdSeS magic-size clusters (MSCs) and quantum dots (QDs) is proposed. At 25 ℃, the precursor compound of CdSeS MSC-380 (PC-380) forms via chemical self-assembly in the reaction of CdCl2/3-mercaptopropionic acid (MPA), selenourea (SeU), and thioacetamide (TAA). Primary amine butylamine (BTA) assists the PC to MSC transformation. At 80 ℃, the PC fragments to monomers, followed by the nucleation and growth of CdSeS QDs. Our findings suggest that PC-380 forms prior to the nucleation and growth of CdSeS QDs.

Abstract

Little is known about the synthesis of colloidal ternary semiconductor magic-size clusters (MSCs) and quantum dots (QDs) in an aqueous environment. We report here the first synthesis of aqueous-phase CdSeS MSC-380 (displaying sharp optical absorption peaking at ~ 380 nm) at room temperature and QDs at elevated temperatures. The reaction contains CdCl2·2.5H2O, 3-mercaptopropionic acid (MPA, HS−(CH2)2−COOH), selenourea (SeU, NH2−C(Se)−NH2), and thioacetamide (TAA, CH3−C(S)−NH2). Prior to the nucleation and growth (N/G) of QDs, there are clusters formed at 25 °C. The prenucleation-stage clusters are the precursor compound of CdSeS MSC-380 (PC-380). The PC is relatively transparent in optical absorption; in the presence of a primary amine butylamine (BTA, CH3−(CH2)3−NH2), the PC transforms to absorbing CdSeS MSC-380. At 80 °C, the PC decreases and the N/G of CdSeS QDs appears. The present study paves the way to the aqueous-phase synthesis of ternary CdSeS MSCs and QDs, providing an in-depth understanding of the cluster formation in the prenucleation stage of CdSeS QDs.

Electronic Supplementary Material

Download File(s)
6884_ESM.pdf (1.5 MB)

References

[1]

Yu, K.; Schanze, K. S. Commemorating the nobel prize in chemistry 2023 for the discovery and synthesis of quantum dots. ACS Cent. Sci. 2023, 9, 1989–1992.

[2]

Manna, L. The bright and enlightening science of quantum dots. Nano Lett. 2023, 23, 9673–9676.

[3]

Franzl, T.; Klar, T. A.; Schietinger, S.; Rogach, A. L.; Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 2004, 4, 1599–1603.

[4]

Rogach, A. L.; Gaponik, N.; Lupton, J. M.; Bertoni, C.; Gallardo, D. E.; Dunn, S.; Pira, N. L.; Paderi, M.; Repetto, P.; Romanov, S. G. et al. Light-emitting diodes with semiconductor nanocrystals. Angew. Chem., Int. Ed. 2008, 47, 6538–6549.

[5]

Li, Y. L.; Duan, X.; Jing, L. H.; Yang, C. H.; Qiao, R. R.; Gao, M. Y. Quantum dot-antisense oligonucleotide conjugates for multifunctional gene transfection, mRNA regulation, and tracking of biological processes. Biomaterials 2011, 32, 1923–1931.

[6]

Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.

[7]

Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.

[8]

Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.

[9]

Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.

[10]

Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

[11]

Wang, T. H.; Wang, Z.; Wang, S. L.; Chen, X. Q.; Luan, C. R.; Yu, K. Thermally-induced isomerization of prenucleation clusters during the prenucleation stage of CdTe quantum dots. Angew. Chem., Int. Ed. 2023, 62, e202310234.

[12]

Zhang, Y.; Chen, Q. Y.; Chen, S.; Wang, S. L.; Zhang, M.; Yu, K. Evolution of aqueous-phase CdTe magic-size clusters from their precursor compounds. J. Phys. Chem. Lett. 2023, 14, 5188–5193.

[13]

Li, Y.; Zhang, M.; He, L.; Rowell, N.; Kreouzis, T.; Zhang, C. C.; Wang, S. L.; Luan, C. R.; Chen, X. Q.; Zhang, S. J. et al. Manipulating reaction intermediates to aqueous-phase ZnSe magic-size clusters and quantum dots at room temperature. Angew. Chem., Int. Ed. 2022, 61, e202209615.

[14]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[15]

Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

[16]

Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548–552.

[17]

Shen, H. B.; Wang, H. Z.; Chen, X.; Niu, J. Z.; Xu, W. W.; Li, X. M.; Jiang, X. D.; Du, Z. L.; Li, L. S. Size- and shape-controlled synthesis of CdTe and PbTe nanocrystals using tellurium dioxide as the tellurium precursor. Chem. Mater. 2010, 22, 4756–4761.

[18]

Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Aqueous phase synthesized CdSe nanoparticles with well-defined numbers of constituent atoms. J. Phys. Chem. C 2010, 114, 18834–18840.

[19]

Zhao, M.; Chen, Q. Y.; Zhu, Y. C.; Liu, Y. H.; Zhang, C. C.; Jiang, G.; Zhang, M.; Yu, K. Precursor compound enabled formation of aqueous-phase CdSe magic-size clusters at room temperature. Nano Res. 2022, 15, 2634–2642.

[20]

Chen, Q. Y.; Zhang, Y.; Chen, S.; Liu, Y. H.; Zhang, C. C.; Zhang, M.; Yu, K. Surface-ligand tuned reversible transformations in aqueous environments between CdSe magic-size clusters and their precursor compounds. Small 2024, 20, 2304277.

[21]

Wan, W. S.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Kreouzis, T.; Fan, H. S.; Huang, W.; Yu, K. Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nat. Commun. 2020, 11, 4199.

[22]

Chen, S.; Zhang, Y.; Chen, Q. Y.; Zhang, C. C.; Zhang, M.; Yu, K. Precursor compound-assisted formation of CdS magic-size clusters in aqueous solutions. Inorg. Chem. 2023, 62, 18290–18298.

[23]

Rogach, A. L.; Kornowski, A.; Gao, M. Y.; Eychmüller, A.; Weller, H. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B 1999, 103, 3065–3069.

[24]

Rogach, A. L.; Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem. Mater. 2000, 12, 2676–2685.

[25]

Ma, X. D.; Qian, X. F.; Yin, J.; Xi, H. A.; Zhu, Z. K. Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature. J. Colloid Interface Sci. 2002, 252, 77–81.

[26]

Bäumle, M.; Stamou, D.; Segura, J. M.; Hovius, R.; Vogel, H. Highly fluorescent streptavidin-coated CdSe nanoparticles: Preparation in water, characterization, and micropatterning. Langmuir 2004, 20, 3828–3831.

[27]

Chen, X. F.; Hutchison, J. L.; Dobson, P. J.; Wakefield, G. A one-step aqueous synthetic route to extremely small CdSe nanoparticles. J. Colloid Interface Sci. 2008, 319, 140–143.

[28]

Wang, Y. L.; Yang, H.; Xia, Z. Y.; Tong, Z. F.; Zhou, L. Y. One-pot synthesis of CdSe quantum dots using selenium dioxide as a selenium source in aqueous solution. Bull. Korean Chem. Soc. 2011, 32, 2316–2318.

[29]

Li, C. B.; Li, Z. J.; Yu, S.; Wang, G. X.; Wang, F.; Meng, Q. Y.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z. Interface-directed assembly of a simple precursor of [FeFe]-H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ. Sci. 2013, 6, 2597–2602.

[30]

Putri, L. K.; Ng, B. J.; Ong, W. J.; Lee, H. W.; Chang, W. S.; Mohamed, A. R.; Chai, S. P. Energy level tuning of CdSe colloidal quantum dots in ternary 0D-2D-2D CdSe QD/B-rGO/O-gC3N4 as photocatalysts for enhanced hydrogen generation. Appl. Catal. B: Environ. 2020, 265, 118592.

[31]

Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665–7673.

[32]

Zheng, J. S.; Huang, F.; Yin, S. G.; Wang, Y. J.; Lin, Z.; Wu, X. L.; Zhao, Y. B. Correlation between the photoluminescence and oriented attachment growth mechanism of CdS quantum dots. J. Am. Chem. Soc. 2010, 132, 9528–9530.

[33]

Aboulaich, A.; Billaud, D.; Abyan, M.; Balan, L.; Gaumet, J. J.; Medjadhi, G.; Ghanbaja, J.; Schneider, R. One-pot noninjection route to CdS quantum dots via hydrothermal synthesis. ACS Appl. Mater. Interfaces 2012, 4, 2561–2569.

[34]

Molaei, M.; Marandi, M.; Saievar-Iranizad, E.; Taghavinia, N.; Liu, B.; Sun, H. D.; Sun, X. W. Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. J. Lumin. 2012, 132, 467–473.

[35]

Baslak, C.; Aslan, E.; Patir, I. H.; Kus, M.; Ersoz, M. Photocatalytic hydrogen evolution based on mercaptopropionic acid stabilized CdS and CdTeS quantum dots. Int. J. Hydrogen Energy 2016, 41, 20523–20528.

[36]

Kaur, J.; Komal; Renu; Kumar, V.; Tikoo, K. B.; Bansal, S.; Kaushik, A.; Singhal, S. Glutathione modified fluorescent CdS QDs synthesized using environmentally benign pathway for detection of mercury ions in aqueous phase. J. Fluoresc. 2020, 30, 773–785.

[37]

Gao, M. Y.; Kirstein, S.; Möhwald, H.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 1998, 102, 8360–8363.

[38]

Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.

[39]

Zhang, H.; Wang, D. Y.; Yang, B.; Möhwald, H. Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures. J. Am. Chem. Soc. 2006, 128, 10171–10180.

[40]

Qian, H. F.; Dong, C. Q.; Weng, J. F.; Ren, J. C. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small 2006, 2, 747–751.

[41]

Shavel, A.; Gaponik, N.; Eychmüller, A. Factors governing the quality of aqueous CdTe nanocrystals: Calculations and experiment. J. Phys. Chem. B 2006, 110, 19280–19284.

[42]

Yang, W. H.; Li, W. W.; Dou, H. J.; Sun, K. Hydrothermal synthesis for high-quality CdTe quantum dots capped by cysteamine. Mater. Lett. 2008, 62, 2564–2566.

[43]

Idowu, M.; Lamprecht, E.; Nyokong, T. Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J. Photochem. Photobiol. A: Chem. 2008, 198, 7–12.

[44]

Duan, J. L.; Song, L. X.; Zhan, J. H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009, 2, 61–68.

[45]

Wang, Q. S.; Fang, T. T.; Liu, P.; Deng, B. H.; Min, X. M.; Li, X. Direct synthesis of high-quality water-soluble CdTe: Zn2+ quantum dots. Inorg. Chem. 2012, 51, 9208–9213.

[46]

Tan, J. W.; Liang, Y.; Wang, J. X.; Chen, J. F.; Sun, B. C.; Shao, L. Facile synthesis of CdTe-based quantum dots promoted by mercaptosuccinic acid and hydrazine. New J. Chem. 2015, 39, 4488–4493.

[47]

Huang, X. D.; Jing, L. H.; Kershaw, S. V.; Wei, X. J.; Ning, H. R.; Sun, X. D.; Rogach, A. L.; Gao, M. Y. Narrowing the photoluminescence of aqueous CdTe quantum dots via ostwald ripening suppression realized by programmed dropwise precursor addition. J. Phys. Chem. C 2018, 122, 11109–11118.

[48]
Xue, J. W.; Wang, S. S.; Wang, Z.; Luan, C. R.; Li, Y.; Chen, X. Q.; Yu, K. Pathway of room-temperature formation of CdSeS magic-size clusters from mixtures of CdSe and CdS samples. Small, in press, DOI: 10.1002/smll.202402121.
[49]

Pesters, O. M.; De Ranter, C. J. Kinetics of the hydrolysis of thioacetamide in alkaline solution. J. Chem. Soc. Perkin Trans. 2 1976, 1062–1065.

[50]

Thomson, J. W.; Nagashima, K.; Macdonald, P. M.; Ozin, G. A. From sulfur-amine solutions to metal sulfide nanocrystals: Peering into the oleylamine-sulfur black box. J. Am. Chem. Soc. 2011, 133, 5036–5041.

[51]

Wang, Y. J.; Liu, Z. K.; Huo, N. J.; Li, F.; Gu, M. F.; Ling, X. F.; Zhang, Y. N.; Lu, K. Y.; Han, L.; Fang, H. H. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136.

Nano Research
Pages 10529-10535
Cite this article:
Jiang Y, Wang Z, Wang S, et al. Development of aqueous-phase CdSeS magic-size clusters at room temperature and quantum dots at elevated temperatures. Nano Research, 2024, 17(12): 10529-10535. https://doi.org/10.1007/s12274-024-6884-y
Topics:

1006

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 May 2024
Revised: 10 July 2024
Accepted: 15 July 2024
Published: 24 August 2024
© Tsinghua University Press 2024
Return