AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanoscale materials transformations revealed by liquid phase TEM

Qiubo Zhang1Daewon Lee1,2Haimei Zheng1,2( )
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
Show Author Information

Graphical Abstract

Abstract

Nanoscale materials often undergo structural, morphological, or chemical changes, especially in solution processes, where heterogeneity and defects may significantly impact the transformation pathways. Liquid phase transmission electron microscopy (TEM), allowing us to track dynamic transformations of individual nanoparticles, has become a powerful platform to reveal nanoscale materials transformation pathways and address challenging issues that are hard to approach by other methods. With the development of modern liquid cells, implementing advanced imaging and image analysis methods, and strategically exploring diverse systems, significant advances have been made in liquid phase TEM, including improved high-resolution imaging through liquids at the atomic level and remarkable capabilities in handling complex systems and reactions. In the past more than a decade, we spent much effort in developing and applying liquid phase TEM to elucidate how atomic level heterogeneity and defects impact various physicochemical processes in liquids, such as growth, self-assembly of nanoparticles, etching/corrosion, electrodeposition of alkali metals, catalyst restructuring during reactions, and so on. This article provides a brief review of the liquid phase TEM study of nanoscale materials transformations, focusing on the growth of nanomaterials with distinct shape/hierarchical structures, such as one-dimensional (1D) growth by nanoparticle attachment, two-dimensional (2D) growth with nanoparticles as intermediates, core–shell structure ripening, solid–liquid interfaces including those in batteries and electrocatalysis, highlighting the impacts of heterogeneity and defects on broad nanoscale transformation pathways.

References

[1]

Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.

[2]

Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Král, P.; Matsudaira, P.; Mirsaidov, U. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 2017, 9, 77–82.

[3]

Zhang, Q. B.; Wan, J. W.; Shangguan, J. Y.; Betzler, S.; Zheng, H. M. Influence of sub-zero temperature on nucleation and growth of copper nanoparticles in electrochemical reactions. iScience 2021, 24, 103289.

[4]

Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64.

[5]

Sutter, E.; Sutter, P.; Tkachenko, A. V.; Krahne, R.; De Graaf, J.; Arciniegas, M.; Manna, L. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 2016, 7, 11213.

[6]

Ou, Z. H.; Wang, Z. W.; Luo, B. B.; Luijten, E.; Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 2020, 19, 450–455.

[7]

Kim, A.; Vo, T.; An, H.; Banerjee, P.; Yao, L. H.; Zhou, S.; Kim, C.; Milliron, D. J.; Glotzer, S. C.; Chen, Q. Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting. Nat. Commun. 2022, 13, 6774.

[8]

Vavra, J.; Shen, T. H.; Stoian, D.; Tileli, V.; Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 1347–1354.

[9]

Grosse, P.; Yoon, A.; Rettenmaier, C.; Herzog, A.; Chee, S. W.; Roldan Cuenya, B. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 2021, 12, 6736.

[10]

Chen, Q.; Yuk, J. M.; Hauwiller, M. R.; Park, J.; Dae, K. S.; Kim, J. S.; Alivisatos, A. P. Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy. MRS Bull. 2020, 45, 713–726.

[11]

Peng, X. X.; Zhu, F. C.; Jiang, Y. H.; Sun, J. J.; Xiao, L. P.; Zhou, S. Y.; Bustillo, K. C.; Lin, L. H.; Cheng, J.; Li, J. F. et al. Identification of a quasi-liquid phase at solid–liquid interface. Nat. Commun. 2022, 13, 3601.

[12]

Zhang, Q. B.; Peng, X. X.; Nie, Y. F.; Zheng, Q.; Shangguan, J. Y.; Zhu, C.; Bustillo, K. C.; Ercius, P.; Wang, L. W.; Limmer, D. T. et al. Defect-mediated ripening of core–shell nanostructures. Nat. Commun. 2022, 13, 2211.

[13]

Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886.

[14]

Mirsaidov, U.; Patterson, J. P.; Zheng, H. M. Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution. MRS Bull. 2020, 45, 704–712.

[15]

Zheng, W. J.; Lee, D.; Zheng, H. M. Strategies to overcome electron-beam issues in liquid phase TEM: Study of chemical processes. MRS Bull. 2024, 49, 205–213.

[16]

Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

[17]

Zeng, Z. Y.; Zhang, X. W.; Bustillo, K.; Niu, K. Y.; Gammer, C.; Xu, J.; Zheng, H. M. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 2015, 15, 5214–5220.

[18]

Wang, W.; Xu, T.; Chen, J. G.; Shangguan, J. Y.; Dong, H.; Ma, H. S.; Zhang, Q. B.; Yang, J. W.; Bai, T. T.; Guo, Z. R. et al. Solid-liquid-gas reaction accelerated by gas molecule tunnelling-like effect. Nat. Mater. 2022, 21, 859–863.

[19]

Yang, Y.; Louisia, S.; Yu, S.; Jin, J. B.; Roh, I.; Chen, C. B.; Fonseca Guzman, M. V.; Feijóo, J.; Chen, P. C.; Wang, H. S. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262–269.

[20]

Park, J.; Park, H.; Ercius, P.; Pegoraro, A. F.; Xu, C.; Kim, J. W.; Han, S. H.; Weitz, D. A. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 2015, 15, 4737–4744.

[21]

Lin, G. H.; Chee, S. W.; Raj, S.; Král, P.; Mirsaidov, U. Linker-mediated self-assembly dynamics of charged nanoparticles. ACS Nano 2016, 10, 7443–7450.

[22]

Chen, Q.; Cho, H.; Manthiram, K.; Yoshida, M.; Ye, X. C.; Alivisatos, A. P. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent. Sci. 2015, 1, 33–39.

[23]

Yang, J.; Zeng, Z. Y.; Kang, J.; Betzler, S.; Czarnik, C.; Zhang, X. W.; Ophus, C.; Yu, C.; Bustillo, K.; Pan, M. et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater. 2019, 18, 970–976.

[24]

Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270.

[25]

Chen, J. J.; Zhu, E. B.; Liu, J.; Zhang, S.; Lin, Z. Y.; Duan, X. F.; Heinz, H.; Huang, Y.; De Yoreo, J. J. Building two-dimensional materials one row at a time: Avoiding the nucleation barrier. Science 2018, 362, 1135–1139.

[26]

Zhang, Q. B.; Song, Z. G.; Wang, Y.; Nie, Y. F.; Wan, J. W.; Bustillo, K. C.; Ercius, P.; Wang, L. W.; Sun, L. T.; Zheng, H. M. Swap motion-directed twinning of nanocrystals. Sci. Adv. 2022, 8, eabp9970.

[27]

Peng, X. X.; Shangguan, J. Y.; Zhang, Q. B.; Hauwiller, M.; Yu, H. B.; Nie, Y. F.; Bustillo, K. C.; Alivisatos, A. P.; Asta, M.; Zheng, H. M. Unveiling corrosion pathways of Sn nanocrystals through high-resolution liquid cell electron microscopy. Nano Lett. 2024, 24, 1168–1175.

[28]

Zheng, Q.; Shangguan, J. Y.; Li, X. L.; Zhang, Q. B.; Bustillo, K. C.; Wang, L. W.; Jiang, J. Y.; Zheng, H. M. Observation of surface ligands-controlled etching of palladium nanocrystals. Nano Lett. 2021, 21, 6640–6647.

[29]

Lee, S. Y.; Shangguan, J. Y.; Alvarado, J.; Betzler, S.; Harris, S. J.; Doeff, M. M.; Zheng, H. M. Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induced solid-electrolyte interphase modification. Energy Environ. Sci. 2020, 13, 1832–1842.

[30]

Zhang, Q. B.; Song, Z. G.; Sun, X. H.; Liu, Y.; Wan, J. W.; Betzler, S. B.; Zheng, Q.; Shangguan, J. Y.; Bustillo, K. C.; Ercius, P. et al. Atomic dynamics of electrified solid–liquid interfaces in liquid-cell TEM. Nature 2024, 630, 643–647.

[31]

Powers, A. S.; Liao, H. G.; Raja, S. N.; Bronstein, N. D.; Alivisatos, A. P.; Zheng, H. M. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett. 2017, 17, 15–20.

[32]

Wang, Y.; Peng, X. X.; Abelson, A.; Xiao, P. H.; Qian, C.; Yu, L.; Ophus, C.; Ercius, P.; Wang, L. W.; Law, M. et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 2019, 5, eaaw5623.

[33]

Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.

[34]

Sun, J.; He, L. B.; Lo, Y. C.; Xu, T.; Bi, H. C.; Sun, L. T.; Zhang, Z.; Mao, S. X.; Li, J. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 2014, 13, 1007–1012.

[35]

Wang, Y.; Peng, X. X.; Abelson, A.; Zhang, B. K.; Qian, C.; Ercius, P.; Wang, L. W.; Law, M.; Zheng, H. M. In situ TEM observation of neck formation during oriented attachment of PbSe nanocrystals. Nano Res. 2019, 12, 2549–2553.

[36]

Coleman , J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[37]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[38]

Ma, R. Z.; Liang, J. B.; Liu, X. H.; Sasaki, T. General insights into structural evolution of layered double hydroxide: Underlying aspects in topochemical transformation from brucite to layered double hydroxide. J. Am. Chem. Soc. 2012, 134, 19915–19921.

[39]

Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3–12.

[40]

Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

[41]

Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136–143.

[42]

Gamble, F. R.; Osiecki, J. H.; Cais, M.; Pisharody, R.; DiSalvo, F. J.; Geballe, T. H. Intercalation complexes of Lewis bases and layered sulfides: A large class of new superconductors. Science 1971, 174, 493–497.

[43]

Ha, B.; Char, K.; Jeon, H. S. Intercalation mechanism and interlayer structure of hexadecylamines in the confined space of layered α-zirconium phosphates. J. Phys. Chem. B 2005, 109, 24434–24440.

[44]

Jang, J. T.; Jeong, S.; Seo, J. W.; Kim, M. C.; Sim, E.; Oh, Y.; Nam, S.; Park, B.; Cheon, J. Ultrathin zirconium disulfide nanodiscs. J. Am. Chem. Soc. 2011, 133, 7636–7639.

[45]

Manna, L.; Wang; Cingolani, R.; Alivisatos, A. P. First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: A model system for studying the anisotropic growth of CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 6183–6192.

[46]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[47]

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

[48]

Niu, J.; Wang, D.; Qin, H. L.; Xiong, X.; Tan, P. L.; Li, Y. Y.; Liu, R.; Lu, X. X.; Wu, J.; Zhang, T. et al. Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nat. Commun. 2014, 5, 3313.

[49]

Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

[50]

Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813.

[51]

Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

[52]

Li, Z.; Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 2011, 133, 6578–6586.

[53]

Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

[54]

Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. I.; Park, K.; Kim, J. H.; An, K.; Yu, J. H.; Kwon, S. G. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem., Int. Ed. 2009, 48, 6861–6864.

[55]

Gao, S.; Sun, Y. F.; Lei, F. C.; Liang, L.; Liu, J. W.; Bi, W. T.; Pan, B. C.; Xie, Y. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew. Chem., Int. Ed. 2014, 53, 12789–12793.

[56]

Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

[57]

Son, J. S.; Yu, J. H.; Kwon, S. G.; Lee, J.; Joo, J.; Hyeon, T. Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals. Adv. Mater. 2011, 23, 3214–3219.

[58]

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

[59]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[60]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

[61]

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

[62]

Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64.

[63]

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Castro Neto, A. H.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

[64]

Ostwald, W. Z. Blocking of Ostwald ripening allowing long-term stabilization. Phys. Chem. 1901, 37, 385–390.

[65]

Yang, M. J.; Zhang, T. Y.; Schulz, P.; Li, Z.; Li, G.; Kim, D. H.; Guo, N. J.; Berry, J. J.; Zhu, K.; Zhao, Y. X. Facile fabrication of large-grain CH3NH3PbI3− x Br x films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 2016, 7, 12305.

[66]

Ma, H.; Kang, S.; Lee, S.; Park, G.; Bae, Y.; Park, G.; Kim, J.; Li, S.; Baek, H.; Kim, H. et al. Moisture-induced degradation of quantum-sized semiconductor nanocrystals through amorphous intermediates. ACS Nano 2023, 17, 13734–13745.

[67]

Peng, X. X.; Abelson, A.; Wang, Y.; Qian, C.; Shangguan, J. Y.; Zhang, Q. B.; Yu, L.; Yin, Z. W.; Zheng, W. J.; Bustillo, K. C. et al. In situ TEM study of the degradation of PbSe nanocrystals in air. Chem. Mater. 2019, 31, 190–199

[68]

Prieto, G.; Zečević, J.; Friedrich, H.; de Jong, K. P.; de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 2013, 12, 34–39.

[69]

Capdevila-Cortada, M. Interrogating the copper. Nat. Catal. 2020, 3, 860.

[70]

Ouyang, R. H.; Liu, J. X.; Li, W. X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771.

[71]

Liu, Y.; Yang, Y.; Sun, Y. J.; Song, J. B.; Rudawski, N. G.; Chen, X. Y.; Tan, W. H. Ostwald ripening-mediated grafting of metal-organic frameworks on a single colloidal nanocrystal to form uniform and controllable MXF. J. Am. Chem. Soc. 2019, 141, 7407–7413.

[72]

Jeon, S.; Heo, T.; Hwang, S. Y.; Ciston, J.; Bustillo, K. C.; Reed, B. W.; Ham, J.; Kang, S.; Kim, S.; Lim, J. et al. Reversible disorder-order transitions in atomic crystal nucleation. Science 2021, 371, 498–503.

[73]

Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core–shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

[74]

Lee, M.; Lee, S. Y.; Kang, M. H.; Won, T. K.; Kang, S.; Kim, J.; Park, J.; Ahn, D. J. Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films. Nat. Commun. 2024, 15, 908.

[75]

Ma, H.; Kim, D.; Park, S. I.; Choi, B. K.; Park, G.; Baek, H.; Lee, H.; Kim, H.; Yu, J. S.; Lee, W. C. et al. Direct observation of off-stoichiometry-induced phase transformation of 2D CdSe quantum nanosheets. Adv. Sci. 2023, 10, 2205690.

[76]

Xie, Y. J.; Wang, J. Y.; Savitzky, B. H.; Chen, Z.; Wang, Y.; Betzler, S.; Bustillo, K.; Persson, K.; Cui, Y.; Wang, L. W. et al. Spatially resolved structural order in low-temperature liquid electrolyte. Sci. Adv. 2023, 9, eadc9721.

[77]

Sahu, P.; Prasad, B. L. V. Fine control of nanoparticle sizes and size distributions: Temperature and ligand effects on the digestive ripening process. Nanoscale 2013, 5, 1768–1771.

[78]

Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

[79]

Narula, C. K.; Yang, X. F.; Li, C.; Lupini, A. R.; Pennycook, S. J. A pathway for the growth of core–shell Pt-Pd nanoparticles. J. Phys. Chem. C 2015, 119, 25114–25121.

[80]

Chen, L.; Leonardi, A.; Chen, J.; Cao, M. H.; Li, N.; Su, D.; Zhang, Q.; Engel, M.; Ye, X. C. Imaging the kinetics of anisotropic dissolution of bimetallic core–shell nanocubes using graphene liquid cells. Nat. Commun. 2020, 11, 3041.

[81]

Li, J.; Zhu, Y. Y.; Chen, W.; Lu, Z. Y.; Xu, J. W.; Pei, A.; Peng, Y. C.; Zheng, X. L.; Zhang, Z. W.; Chu, S. et al. Breathing-mimicking electrocatalysis for oxygen evolution and reduction. Joule 2019, 3, 557–569.

[82]

Liu, Z.; Sheng, X.; Wang, D. D.; Feng, X. J. Efficient hydrogen peroxide generation utilizing photocatalytic oxygen reduction at a triphase interface. iScience 2019, 17, 67–73.

[83]

Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.

[84]

Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 2021, 593, 67–73.

[85]

Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[86]

Zachman, M. J.; Tu, Z. Y.; Choudhury, S.; Archer, L. A.; Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 2018, 560, 345–349.

[87]

Molinari, A.; Leufke, P. M.; Reitz, C.; Dasgupta, S.; Witte, R.; Kruk, R.; Hahn, H. Hybrid supercapacitors for reversible control of magnetism. Nat. Commun. 2017, 8, 15339.

[88]

Egbe, D. I. O.; Jahanbani Ghahfarokhi, A.; Nait Amar, M.; Torsæter, O. Application of low-salinity waterflooding in carbonate cores: A geochemical modeling study. Nat. Resour. Res. 2021, 30, 519–542.

[89]

Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

[90]

Sun, M. H.; Liao, H. G.; Niu, K. Y.; Zheng, H. M. Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep. 2013, 3, 3227.

[91]

Zeng, Z. Y.; Liang, W. I.; Chu, Y. H.; Zheng, H. M. In situ TEM study of the Li-Au reaction in an electrochemical liquid cell. Faraday Discuss. 2014, 176, 95–107.

[92]

Zeng, Z. Y.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H. M. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 2014, 14, 1745–1750.

[93]

Lee, S. Y.; Shangguan, J. Y.; Betzler, S.; Harris, S. J.; Doeff, M. M.; Zheng, H. M. Lithium metal stripping mechanisms revealed through electrochemical liquid cell electron microscopy. Nano Energy 2022, 102, 107641.

[94]

Wu, Y. A.; Yin, Z. W.; Farmand, M.; Yu, Y. S.; Shapiro, D. A.; Liao, H. G.; Liang, W. I.; Chu, Y. H.; Zheng, H. M. In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces. Sci. Rep. 2017, 7, 42527.

[95]

Zeng, Z. Y.; Barai, P.; Lee, S. Y.; Yang, J.; Zhang, X. W.; Zheng, W. J.; Liu, Y. S.; Bustillo, K. C.; Ercius, P.; Guo, J. H. et al. Electrode roughness dependent electrodeposition of sodium at the nanoscale. Nano Energy 2020, 72, 104721.

[96]

Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106–6112.

Nano Research
Pages 9152-9165
Cite this article:
Zhang Q, Lee D, Zheng H. Nanoscale materials transformations revealed by liquid phase TEM. Nano Research, 2024, 17(10): 9152-9165. https://doi.org/10.1007/s12274-024-6885-x
Topics:

387

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 June 2024
Revised: 12 July 2024
Accepted: 14 July 2024
Published: 03 August 2024
© Tsinghua University Press 2024
Return