AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Amino-modified UiO-66-NH2 reinforced polyurethane based polymer electrolytes for high-voltage solid-state lithium metal batteries

Danru Huang1,§Lin Wu2,§Qi Kang2,3,§Zhiyong Shen1Qiaosheng Huang1Wenjie Lin2Fei Pei1,2( )Yunhui Huang2
State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China
State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

§ Danru Huang, Lin Wu, and Qi Kang contributed equally to this work.

Show Author Information

Graphical Abstract

Amino-modified Zr-carboxylate metal-organic frameworks (MOFs) (UiO-66-NH2) were designed as multifunctional fillers in forming a rich hydrogen bond network with polyurethane based electrolyte, achieving the collaborative promotion of the mechanical strength and room temperature ionic conductivity.

Abstract

Solid-state polymer electrolytes (SPEs) are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes. However, low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries (LMBs) hinder their practical applications. Here, amino-modified metal-organic frameworks (UiO-66-NH2) with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity. The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains, forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks. The rich interfaces between UiO-66-NH2 and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance, which markedly boosted the ionic conductivity to 2.1 × 10−4 S·cm−1 with a high Li+ transference numbers of 0.71. As a result, LiFePO4|SPEs|Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5% capacity retention. The LiNi0.6Co0.2Mn0.2O2 (NCM622)|SPEs|Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9% and high average Coulombic efficiency (98.5%) under ambient conditions. This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries.

Electronic Supplementary Material

Download File(s)
6886_ESM.pdf (5.9 MB)

References

[1]

Bauer, C.; Burkhardt, S.; Dasgupta, N. P.; Ellingsen, L. A. W.; Gaines, L. L.; Hao, H.; Hischier, R.; Hu, L. B.; Huang, Y. H.; Janek, J. et al. Charging sustainable batteries. Nat. Sustain. 2022, 5, 176–178.

[2]

Zhao, W. J. A forum on batteries: From lithium-ion to the next generation. Natl. Sci. Rev. 2020, 7, 1263–1268.

[3]

Xue, W. J.; Huang, M. J.; Li, Y. T.; Zhu, Y. G.; Gao, R.; Xiao, X. H.; Zhang, W. X.; Li, S. P.; Xu, G. Y.; Yu, Y. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 2021, 6, 495–505.

[4]

Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 2020, 5, 299–308.

[5]

Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

[6]

Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. Ag x Zn y protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

[7]

Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

[8]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.

[9]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 203540.

[10]

Qin, J. L.; Pei, F.; Wang, R.; Wu, L.; Han, Y.; Xiao, P.; Shen, Y.; Yuan, L. X.; Huang, Y. H.; Wang, D. L. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg–1 lithium metal batteries. Adv. Mater. 2024, 36, 2312773.

[11]

Hou, R. H.; Zhang, S. J.; Zhang, Y. S.; Li, N.; Wang, S. B.; Ding, B.; Shao, G. S.; Zhang, P. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200302.

[12]

Zhang, Y. S.; Wu, Z. H.; Wang, S. B.; Li, N.; Silva, S. R. P.; Shao, G. S.; Zhang, P. Complex permittivity-dependent plasma confinement-assisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li-S full cells. InfoMat 2022, 4, e12294.

[13]

Bai, M.; Tang, X. Y.; Zhang, M.; Wang, H. L.; Wang, Z. Q.; Shao, A. H.; Ma, Y. An in-situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries. Nat. Commun. 2024, 15, 5375.

[14]

Pei, F.; Lin, L. L.; Fu, A.; Mo, S. G.; Ou, D. H.; Fang, X. L.; Zheng, N. F. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2018, 2, 323–336.

[15]

Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

[16]

Niu, Y. J.; Yu, Z. Z.; Zhou, Y. J.; Tang, J. W.; Li, M. X.; Zhuang, Z. C.; Yang, Y.; Huang, X.; Tian, B. B. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Res. 2022, 15, 7180–7189.

[17]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[18]

Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.

[19]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[20]

Huo, S. D.; Sheng, L.; Xue, W. D.; Wang, L.; Xu, H.; Zhang, H.; He, X. M. Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat 2023, 5, e12394.

[21]

Yang, X. F.; Jiang, M.; Gao, X. J.; Bao, D. N.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C. T. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal–OH group. Energy Environ. Sci. 2020, 13, 1318–1325.

[22]

Zhang, H.; Oteo, U.; Zhu, H. J.; Judez, X.; Martinez-Ibañez, M.; Aldalur, I.; Sanchez-Diez, E.; Li, C. M.; Carrasco, J.; Forsyth, M. et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion. Angew. Chem., Int. Ed. 2019, 58, 7829–7834.

[23]

Pei, F.; Dai, S. Q.; Guo, B. F.; Xie, H.; Zhao, C. W.; Cui, J. Q.; Fang, X. L.; Chen, C. M.; Zheng, N. F. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ. Sci. 2021, 14, 975–985.

[24]

Zheng, Y.; Wang, C. Z.; Zhang, R. R.; Dai, S. Q.; Xie, H.; Cui, J. Q.; Fang, X. L. Crosslinked polymer electrolyte constructed by metal-oxo clusters for solid lithium metal batteries. Energy Storage Mater. 2023, 57, 540–548.

[25]

Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U S A 2017, 114, 11069–11074.

[26]

Duan, H.; Fan, M.; Chen, W. P.; Li, J. Y.; Wang, P. F.; Wang, W. P.; Shi, J. L.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 2019, 31, e1807789.

[27]

Nie, L.; Chen, S. J.; Zhang, C.; Dong, L.; He, Y. J.; Gao, T. Y.; Yu, J. M.; Liu, W. Integration of a low-tortuous electrode and an in-situ-polymerized electrolyte for all-solid-state lithium-metal batteries. Cell Rep. Phys. Sci. 2022, 3, 100851.

[28]

Yu, J. M.; Zhang, Y. N.; Gao, T. Y.; Zhang, X. S.; Lv, Y. J.; Zhang, Y.; Zhang, C.; Liu, W. Unlocking the concentration polarization for solid-state lithium metal batteries. Chem. Eng. J. 2024, 487, 150646.

[29]

Xia, S. X.; Yang, B. B.; Zhang, H. B.; Yang, J. H.; Liu, W.; Zheng, S. Y. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv. Funct. Mater. 2021, 31, 2101168.

[30]

Ouyang, Y.; Gong, W.; Zhang, Q.; Wang, J.; Guo, S. J.; Xiao, Y. B.; Li, D. X.; Wang, C. H.; Sun, X. L.; Wang, C. Y. et al. Bilayer zwitterionic metal-organic framework for selective all-solid-state superionic conduction in lithium metal batteries. Adv. Mater. 2023, 35, 2304685.

[31]

Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67.

[32]

Pei, F.; Wu, L.; Zhang, Y.; Liao, Y. Q.; Kang, Q.; Han, Y.; Zhang, H. W.; Shen, Y.; Xu, H. H.; Li, Z. et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 2024, 15, 351.

[33]

Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145.

[34]

Zheng, N.; Fang, Z. Z.; Zou, W. K.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem., Int. Ed. 2016, 55, 11421–11425.

[35]

Wu, L.; Pei, F.; Cheng, D. M.; Zhang, Y.; Cheng, H.; Huang, K.; Yuan, L. X.; Li, Z.; Xu, H. H.; Huang, Y. H. Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2310084.

[36]

Wang, H. C.; Wang, Q.; Cao, X.; He, Y. Y.; Wu, K.; Yang, J. J.; Zhou, H. H.; Liu, W.; Sun, X. M. Thiol-branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium-metal batteries. Adv. Mater. 2020, 32, 2001259.

[37]

Chen, J.; Gao, Y. Y.; Shi, L.; Yu, W.; Sun, Z. J.; Zhou, Y. F.; Liu, S.; Mao, H.; Zhang, D. Y.; Lu, T. Q. et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat. Commun. 2022, 13, 4868.

[38]

Mackanic, D. G.; Yan, X. Z.; Zhang, Q. H.; Matsuhisa, N.; Yu, Z. A.; Jiang, Y. W.; Manika, T.; Lopez, J.; Yan, H. P.; Liu, K. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 2019, 10, 5384.

[39]

Guo, H. S.; Han, Y.; Zhao, W. Q.; Yang, J.; Zhang, L. Universally autonomous self-healing elastomer with high stretchability. Nat. Commun. 2020, 11, 2037.

[40]

Chen, J.; Deng, X. T.; Gao, Y. Y.; Zhao, Y. J.; Kong, X. P.; Rong, Q.; Xiong, J. Q.; Yu, D. M.; Ding, S. J. Multiple dynamic bonds-driven integrated cathode/polymer electrolyte for stable all-solid-state lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202307255.

[41]

Narayan, R.; Laberty-Robert, C.; Pelta, J.; Tarascon, J. M.; Dominko, R. Self-healing: An emerging technology for next-generation smart batteries. Adv. Energy Mater. 2022, 12, 2102652.

[42]

Wang, S.; Sun, Q. F.; Zhang, Q.; Li, C.; Xu, C. R.; Ma, Y.; Shi, X. X.; Zhang, H. Z.; Song, D. W.; Zhang, L. Q. Li-ion transfer mechanism of ambient-temperature solid polymer electrolyte toward lithium metal battery. Adv. Energy Mater. 2023, 13, 2204036.

[43]

Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 2023, 35, 2110423.

[44]

Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem., Int. Ed. 2021, 60, 12931–12940.

[45]

Jiang, C.; Jia, Q. Q.; Tang, M.; Fan, K.; Chen, Y.; Sun, M. X.; Xu, S. F.; Wu, Y. C.; Zhang, C. Y.; Ma, J. et al. Regulating the solvation sheath of li ions by using hydrogen bonds for highly stable lithium-metal anodes. Angew. Chem., Int. Ed. 2021, 60, 10871–10879.

[46]

Tang, S.; Lan, Q.; Xu, L.; Liang, J. Y.; Lou, P.; Liu, C.; Mai, L. Q.; Cao, Y. C.; Cheng, S. J. A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery. Nano Energy 2020, 71, 104600.

[47]

Pan, X. Y.; Sun, H.; Wang, Z. X.; Huang, H.; Chang, Q.; Li, J. P.; Gao, J.; Wang, S. F.; Xu, H. H.; Li, Y. T. et al. High voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-metal/NMC622 batteries. Adv. Energy Mater. 2020, 10, 2002416.

[48]

Wang, Z. J.; Chen, C. S.; Wang, D. N.; Zhu, Y.; Zhang, B. Stabilizing interfaces in high-temperature NCM811-Li batteries via tuning terminal alkyl chains of ether solvents. Angew. Chem., Int. Ed. 2023, 62, e202303950.

[49]

Shi, P. R.; Ma, J. B.; Liu, M.; Guo, S.; K. Huang, Y. F.; Wang, S. W.; Zhang, L. H.; Chen, L. K.; et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 2023, 18, 602–610.

Nano Research
Pages 9662-9670
Cite this article:
Huang D, Wu L, Kang Q, et al. Amino-modified UiO-66-NH2 reinforced polyurethane based polymer electrolytes for high-voltage solid-state lithium metal batteries. Nano Research, 2024, 17(11): 9662-9670. https://doi.org/10.1007/s12274-024-6886-9
Topics:

707

Views

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 05 June 2024
Revised: 28 June 2024
Accepted: 15 July 2024
Published: 31 July 2024
© Tsinghua University Press 2024
Return