AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Excellent laccase-like activity of melamine modified Cu-NH2-BDC and selective sensing analyses toward phenols and amines

Haimeng Qiao1Hongtian Yang2Yide Han1Yufeng Liu3Ying Zhang2Xia Zhang1( )
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of traditional Chinese medicine, Beijing 100091, China
College of Pharmacy, Liaoning University, Shenyang 110036, China
Show Author Information

Graphical Abstract

Abstract

Nanozymes based on metal-organic frameworks (MOFs) have been concentrated on due to their naturally high-disperse metal active sites and the adjustable coordination chemistry. In this work, an N-rich melamine (Mel) was introduced into the Cu-MOF composed of copper(II) nitrate and 2-aminoterephthalic acid (Cu-NH2-BDC-Mel) to mimic the laccase, which enzyme-like activities were assessed and applied in sensing analyses toward several phenols and amines. Compared to unmodified Cu-NH2-BDC, the resulting Cu-NH2-BDC-Mel exhibits enhanced laccase-like activity, superior stability and catalytic kinetics. It is demonstrated that melamine-doping has increased nitrogen content as well as the surface area, as a result, exhibits a lower Michaelis–Menten constant (Km) (0.1877 mM) and higher maximum reaction rate (Vmax) (1.7933 × 10−3 mM·min−1) in comparison with that of natural laccase. Based on that, an efficient colorimetric sensing strategy for several phenols and amines was built up with excellent selectivity and anti-interference by using the laccase-like Cu-NH2-BDC-Mel, the detection limits are 3.51 μM of adrenaline and 4.41 μM of dopamine. The work broadens the prospect development of bio-colorimetric sensing based on the ligand-modified Cu-MOFs nanozymes catalysis.

Electronic Supplementary Material

Download File(s)
6888_ESM.pdf (4.1 MB)

References

[1]

Fathali, Z.; Rezaei, S.; Faramarzi, M. A.; Habibi-Rezaei, M. Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int. J. Biol. Macromol. 2019, 122, 359–366.

[2]

Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas—Benefits and challenges. Chem. Soc. Rev. 2013, 42, 6277–6289.

[3]

Bao, Y. W.; Hua, X. W.; Ran, H. H.; Zeng, J.; Wu, F. G. Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of H2O2 and glucose. J. Mater. Chem. B 2019, 7, 296–304.

[4]

Zhang, W.; Lu, Z. P.; Liu, R. T.; Ji, L. R.; Nian, B. B.; Hu, Y. Ionic liquid modulation of metal-organic framework immobilized laccase and boosted its catalytic performance for organic pollutants removal. J. Environ. Chem. Eng. 2023, 11, 110880.

[5]

Feng, F.; Zhang, Y. H.; Zhang, X.; Mu, B.; Zhang, J. H.; Qu, W. J.; Tong, W. S.; Liang, M. M.; An, Q.; Guo, Z. J. et al. Enhancing the peroxidase-like activity of MoS2-based nanozymes by introducing attapulgite for antibacterial application and sensitive detection of glutathione. Nano Res. 2024, 17, 7415–7426.

[6]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[7]

Zhang, Y. J.; Wang, Y. J.; Li, Z. H.; Qu, L. B.; Yu, L. L. Highly selective detection and differentiation of aminophenol isomers based on a bimetallic metal-organic-framework with peroxidase-like activity. New J. Chem. 2024, 48, 1152–1163.

[8]

Chai, H. N.; Yu, K.; Zhao, Y. M.; Zhang, Z. Y.; Wang, S. S.; Huang, C. N.; Zhang, X. J.; Zhang, G. Y. MOF-on-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing. Anal. Chem. 2023, 95, 10785–10794.

[9]

Xu, W.; Zhang, Y. F.; Zhang, X.; Xu, X. X.; Wang, Q. One stone, two birds: A Cu–S cluster as a laccase-mimicking nanozyme and sulfite activator for phenol remediation in marine environments. J. Hazard. Mater. 2023, 457, 131776.

[10]

Huang, H.; Lei, L. L.; Bai, J.; Zhang, L.; Song, D. H.; Zhao, J. Q.; Li, J. L.; Li, Y. X. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes. Chin. J. Chem. Eng. 2021, 29, 167–175.

[11]

Ge, X.; Yu, S. S.; Cheng, R. F.; Chen, W. X.; Zhou, F. Y.; Liang, K.; Chen, J. J.; Yu, H. Q.; Wu, Y. E. Controllable drilling by corrosive Cu1O x to access highly accessible single-site catalysts for bacterial disinfection. Appl. Catal. B: Environ. 2021, 293, 120228.

[12]

Liu, L.; Zhang, S. F.; Li, G.; Zhe, Y. D.; Liu, J. M.; Zhang, X. X.; Wei, J. H.; Sun, X.; Li, Y. H.; Zhang, X. D. D-band center coordination modulated enzyme-like activity in Fe–Cu dual-metal single-atom nanozymes. Nano Res. 2024, 17, 5872–5883.

[13]

Cui, A. N.; Zhang, J. L.; Liu, Z. F.; Mu, X.; Zhong, X. H.; Xu, H. T.; Shan, G. Y. Patterned Au@Ag nanoarrays with electrically stimulated laccase-mimicking activity for dual-mode detection of epinephrine. Talanta 2024, 272, 125821.

[14]

Feng, L. P.; Zhang, L. X.; Chu, S.; Zhang, S.; Chen, X.; Du, Z. L.; Gong, Y. S.; Wang, H. Controllable doping of Fe atoms into MoS2 nanosheets towards peroxidase-like nanozyme with enhanced catalysis for colorimetric analysis of glucose. Appl. Surf. Sci. 2022, 583, 152496.

[15]

Hu, S. L.; Zhang, W. J.; Li, N.; Chang, Q.; Yang, J. L. Integrating biphase γ- and α-Fe2O3 with carbon dots as a synergistic nanozyme with easy recycle and high catalytic activity. Appl. Surf. Sci. 2021, 545, 148987.

[16]

He, B.; Feng, M.; Chen, X. Y.; Sun, J. Multidimensional (0D–3D) functional nanocarbon: Promising material to strengthen the photocatalytic activity of graphitic carbon nitride. Green Energy Environ. 2021, 6, 823–845.

[17]

Hu, R. H.; Zhong, S. Y.; Liu, H. Z.; Liu, Y. W.; Chen, H. X.; Hu, X. J. Laccase-inspired bi-amino acid MOFs with high substrate affinity: Catalytic deposition induced “signal-down” electrochemical response towards PD-L1. Sens. Actuators B: Chem. 2024, 399, 134773.

[18]

Ji, J.; Ko, S. Y.; Choi, K. M.; Kwon, Y. Hydrogen peroxide sensor using the biomimetic structure of peroxidase including a metal organic framework. Appl. Surf. Sci. 2021, 554, 148786.

[19]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[20]

Wang, X. Z.; Wang, H.; Zhang, J. K.; Han, N.; Ma, W. J.; Zhang, D. H.; Yao, M. S.; Wang, X. L.; Chen, Y. F. Peroxidase-like active Cu-ZIF-8 with rich copper(I)-nitrogen sites for excellent antibacterial performances toward drug-resistant bacteria. Nano Res. 2024, 17, 7427–7435.

[21]

Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; He, Z. M. Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase-like activity for the degradation and detection of phenolic compounds. Chem. Eng. J. 2022, 434, 134677.

[22]

Ying, M. H.; Yang, G. Z.; Xu, Y. J.; Ye, H. L.; Lin, X.; Lu, Y.; Pan, H. B.; Bai, Y.; Du, M. Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum. Analyst 2022, 147, 40–47.

[23]

Mate, D. M.; Alcalde, M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechnol. 2017, 10, 1457–1467.

[24]

Yuan, L. H.; Chai, J.; Wang, S. W.; Li, T.; Yan, X. Y.; Wang, J. G.; Yin, H. F. Biomimetic laccase-Cu2O@MOF for synergetic degradation and colorimetric detection of phenolic compounds in wastewater. Environ. Technol. Innov. 2023, 30, 103085.

[25]

Jacobsen, J.; Ienco, A.; D’Amato, R.; Costantino, F.; Stock, N. The chemistry of Ce-based metal-organic frameworks. Dalton Trans. 2020, 49, 16551–16586.

[26]

Smolders, S.; Lomachenko, K. A.; Bueken, B.; Struyf, A.; Bugaev, A. L.; Atzori, C.; Stock, N.; Lamberti, C.; Roeffaers, M. B. J.; De Vos, D. E. Unravelling the redox-catalytic behavior of Ce4+ metal-organic frameworks by X-ray absorption spectroscopy. ChemPhysChem 2018, 19, 373–378.

[27]

Yang, J.; Li, K.; Li, C. Z.; Gu, J. L. Intrinsic apyrase-like activity of cerium-based metal-organic frameworks (MOFs): Dephosphorylation of adenosine tri- and diphosphate. Angew. Chem., Int. Ed. 2020, 59, 22952–22956.

[28]

Liang, S.; Wu, X. L.; Xiong, J.; Yuan, X.; Liu, S. L.; Zong, M. H.; Lou, W. Y. Multivalent Ce-MOFs as biomimetic laccase nanozyme for environmental remediation. Chem. Eng. J. 2022, 450, 138220.

[29]

Wang, B. R.; Liu, P.; Hu, Y. X.; Zhao, H. L.; Zheng, L. Y.; Cao, Q. E. A Cu(II) MOF with laccase-like activity for colorimetric detection of 2,4-dichlorophenol and p-nitrophenol. Dalton Trans. 2023, 52, 2309–2316.

[30]

Shams, S.; Ahmad, W.; Memon, A. H.; Wei, Y.; Yuan, Q. P.; Liang, H. Facile synthesis of laccase mimic Cu/H3BTC MOF for efficient dye degradation and detection of phenolic pollutants. RSC Adv. 2019, 9, 40845–40854.

[31]

Li, M. N.; Xie, Y. F.; Song, D. H.; Huang, H.; Li, Y. X. 2-Methylimidazole-doped nanozymes with enhanced laccase activity for the (+)-catechins detection in dairy products. Talanta 2023, 252, 123853.

[32]

Hu, C. Y.; Jiang, Z. W.; Huang, C. Z.; Li, Y. F. Cu2+-modified MOF as laccase-mimicking material for colorimetric determination and discrimination of phenolic compounds with 4-aminoantipyrine. Microchim. Acta 2021, 188, 272.

[33]

Liang, H.; Lin, F. F.; Zhang, Z. J.; Liu, B. W.; Jiang, S. H.; Yuan, Q. P.; Liu, J. W. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360.

[34]

Li, M. N.; Xie, Y. F.; Zhang, J. B.; Lei, L. L.; Su, X. G. Construction of a laccase mimic enzyme with fluorescence properties for kanamycin multi-mode analysis. Chem. Eng. J. 2023, 471, 144184.

[35]

Liu, X. T.; Wang, F. X.; Xia, C. Q.; You, Q.; Chen, X. X.; Li, Y.; Lin, W.; Guo, L. Q.; Fu, F. F. Copper nanoparticles incorporated nitrogen-rich carbon nitride as laccase-like nanozyme for colorimetric detection of bisphenol a released from microplastics. Microchem. J. 2023, 190, 108682.

[36]

Liu, T.; Cui, Z. W.; Zhou, J.; Wang, Y.; Zou, Z. G. Synthesis of pyridinic-rich N, S co-doped carbon quantum dots as effective enzyme mimics. Nanoscale Res. Lett. 2017, 12, 375.

[37]

Pamei, M.; Achumi, A. G.; Kahmei, R.; Sarkar, A.; Puzari, A. Functionalized copper metal-organic framework with peroxidase-mimetic activity as an adsorbent for efficient removal of noxious organic dye from aqueous solution. Microporous Mesoporous Mater. 2022, 340, 112031.

[38]

Pamei, M.; Kumar, S.; Achumi, A. G.; Puzari, A. Supercapacitive amino-functionalized cobalt and copper metal-organic frameworks with varying surface morphologies for energy storage. J. Electroanal. Chem. 2022, 924, 116885.

[39]

Abdelmoaty, A. S.; El-Beih, A. A.; Hanna, A. A. Synthesis, characterization and antimicrobial activity of copper-metal organic framework (Cu-MOF) and its modification by melamine. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1778–1785.

[40]

Yin, N.; Wang, K.; Xia, Y. A.; Li, Z. Q. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb(II). Desalination 2018, 430, 120–127.

[41]

Wang, L.; Liu, X.; Wang, C. A.; Tie, S. N. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material. Energy Storage Sci. Technol. 2023, 12, 79–85.

[42]

Atinafu, D. G.; Dong, W. J.; Hou, C. M.; Andriamitantsoa, R. S.; Wang, J. J.; Huang, X. B.; Gao, H. Y.; Wang, G. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials. Mater. Today Energy 2019, 12, 239–249.

[43]

Liu, X.; An, P. D.; Han, Y. D.; Meng, H.; Zhang, X. MOF-818(Cu)-derived bi-nanozymes of laccase and catecholase mimics and colorimetric sensing to epinephrine. Microchem. J. 2024, 201, 110559.

[44]

Gao, Z. Y.; Guan, J. P.; Wang, M.; Liu, S. H.; Chen, K. C.; Liu, Q.; Chen, X. Q. A novel laccase-like Cu-MOF for colorimetric differentiation and detection of phenolic compounds. Talanta 2024, 272, 125840.

[45]

Chai, T. Q.; Wang, J. L.; Chen, G. Y.; Chen, L. X.; Yang, F. Q. Tris-copper nanozyme as a novel laccase mimic for the detection and degradation of phenolic compounds. Sensors 2023, 23, 8137.

[46]

Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; Binks, B. P.; He, Z. M. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B: Environ. 2019, 254, 452–462.

[47]

Ankala, B. A.; Achamyeleh, A. A.; Abda, E. M.; Workie, Y. A.; Su, W. N.; Wotango, A. S.; Mekonnen, M. L. MoS2/Cu as a peptide/nucleotide-matrix-free laccase mimetic nanozyme for robust catalytic oxidation of phenolic pollutants. New J. Chem. 2023, 47, 19880–19888.

Nano Research
Cite this article:
Qiao H, Yang H, Han Y, et al. Excellent laccase-like activity of melamine modified Cu-NH2-BDC and selective sensing analyses toward phenols and amines. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6888-7
Topics:

179

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 June 2024
Revised: 11 July 2024
Accepted: 15 July 2024
Published: 03 August 2024
© Tsinghua University Press 2024
Return