AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sensitive and environmental friendly sensor on porphyrin functionalized chitosan fiber membrane for Hg2+

Yafei Ma1Xinman Liu1Zhiping Fu1Lifen Zhang2Yuexin Guo1( )Hui Wang1( )Zhiqian Jia3( )
School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
Tianjin TianShi College, Tianjin 301700, China
College of Chemistry, Beijing Normal University, Beijing 100875, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

The porphyrin group attracts Hg2+ through the conjugate structure of four N atoms to achieve the effect of color development. It can be seen that the sensor can produce color for Hg2+ in different environments.

Abstract

Mercury is the most toxic and harmful heavy metal pollutant, and it is essential to detect and remove mercury from beverages. Inducing the porphyrin molecules into the chitosan structure, a novel membrane sensor tetrakis(4-carboxyphenyl)porphyrin-grafted chitosan fiber membrane (TCPP-CS) was prepared by electrospinning method and applied to recognize Hg2+ contaminant selectively. Compared with other common metal ions (Pb2+, Cu2+, Fe3+, Cr3+, Mg2+, and Zn2+), the colorimetric sensor has specific color development and sensitivity to Hg2+ and the detection limit of the sensor reaches 1 × 10–5 mol·L–1. The response time of the membrane is 5 s, and it can be specifically colored in various pH environments convenient for practical application. Hg2+ resulted in a visual color change of the fiber membrane from brown to yellow-green, indicating a potential interaction between the porphyrin-functionalized chitosan fiber membrane and Hg2+ ions, and the wavelength shift of the UV–visible spectrum can be observed. It has the advantages of simplicity, rapidity, high selectivity, and high sensitivity, providing a new method for removing and detecting heavy metals in traditional Chinese medicine and drinks.

Electronic Supplementary Material

Download File(s)
6890_ESM.pdf (954.5 KB)

References

[1]

Horowitz, H. M.; Jacob, D. J.; Amos, H. M.; Streets, D. G.; Sunderland, E. M. Historical mercury releases from commercial products: Global environmental implications. Environ. Sci. Technol. 2014, 48, 10242–10250.

[2]

Gavilán-García, I. C.; Fernández-Villagomez, G.; Gavilán-García, A.; Alcántara-Concepcion, V. Alternatives of management and disposal for mercury thermometers at the end of their life from Mexican health care institutions. J. Clean. Prod. 2015, 86, 118–124.

[3]

Hylander, L. D.; Herbert, R. B. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores. Environ. Sci. Technol. 2008, 42, 5971–5977.

[4]

Chalkidis, A.; Jampaiah, D.; Hartley, P. G.; Sabri, Y. M.; Bhargava, S. K. Mercury in natural gas streams: A review of materials and processes for abatement and remediation. J. Hazard. Mater. 2020, 382, 121036.

[5]

Xia, J. C.; Wang, J. X.; Zhang, L. M.; Wang, X.; Yuan, W.; Peng, T.; Zheng, L. R.; Tian, W. J.; Feng, X. B. Migration and transformation of soil mercury in a karst region of southwest China: Implications for groundwater contamination. Water Res. 2022, 226, 119271.

[6]

Wang, F. Y.; Wang, S. X.; Zhang, L.; Yang, H.; Gao, W.; Wu, Q. R.; Hao, J. M. Mercury mass flow in iron and steel production process and its implications for mercury emission control. J. Environ. Sci. 2016, 43, 293–301.

[7]

Wang, F. Y.; Wang, S. X.; Zhang, L.; Yang, H.; Wu, Q. R.; Hao, J. M. Characteristics of mercury cycling in the cement production process. J. Hazard. Mater. 2016, 302, 27–35.

[8]

Kogut, K.; Górecki, J.; Burmistrz, P. Opportunities for reducing mercury emissions in the cement industry. J. Clean. Prod. 2021, 293, 126053.

[9]

Wu, Q. R.; Li, G. L.; Wang, S. X.; Liu, K. Y.; Hao, J. M. Mitigation options of atmospheric Hg emissions in China. Environ. Sci. Technol. 2018, 52, 12368–12375.

[10]

Charvát, P.; Klimeš, L.; Pospíšil, J.; Klemeš, J. J.; Varbanov, P. S. An overview of mercury emissions in the energy industry-a step to mercury footprint assessment. J. Clean. Prod. 2020, 267, 122087.

[11]

Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794.

[12]

Huang, Y. J.; Zhou, R. S.; Zhang, C. J.; Wang, Y. L. Advances in the study of mercury pollution in atmospheric environment. Geophys. Geochem. Explor. 2002, 26, 296–298,314.

[13]

Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458.

[14]

Wang, C.; Liu, C.; Hu, Q.; Wang, H.; Gao, J. Y. Pollution status of heavy metals in herbal medicine and their traceability & control in the whole chain production process. Chin. J. Environ. Eng. 2021, 15, 3789–3800.

[15]

He, C. Analysis on excessive heavy metal problem of Chinese materia medica exports to EU from perspective of UK ban. Chin. Tradit. Herb. Drugs 2016, 47, 1820–1824.

[16]

Li, C. Y.; Zhang, Y. Y. Determination and source apportionment of heavy metals and hazardous elements in Banlangen granules by ICP- MS. West China J. Pharm. Sci. 2012, 27, 187–189.

[17]

Lyu, X.; Gu, Z. R.; Ge, B.; Qi, M.; Guo, Y. Study on correlation between active ingredients and inorganic elements of Cynomorii Herba based on multiple producing areas and multiple models. J. Chin. Med. Mater. 2022, 45, 811–817.

[18]

Liu, Y.; Dai, M.; Bao, W. Z.; Huang, B. S.; Guo, L. P.; Liu, D. H. Content characteristics of mineral elements and its correlation with soil nutrients and effective components in chrysanthemum morifolium from different producing areas in Macheng. China J. Chin. Mater. Med. 2021, 46, 281–289.

[19]

Kambuyi, T. N.; Eddaqaq, F.; Driouich, A.; Bejjany, B.; Lekhlif, B.; Mellouk, H.; Digua, K.; Dani, A. Using response surface methodology (RSM) for optimizing turbidity removal by electrocoagulation/electro-flotation in an internal loop airlift reactor. Water Supply 2019, 19, 2476–2484.

[20]

Chen, Z. S.; Zhang, S.; Liu, Y.; Alharbi, N. S.; Rabah, S. O.; Wang, S. H.; Wang, X. X. Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci. Total Environ. 2020, 731, 139054.

[21]

Meng, S. J.; Wang, R.; Zhang, K. J.; Meng, X. H.; Xue, W. C.; Liu, H. J.; Liang, D. W.; Zhao, Q.; Liu, Y. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration. Front. Environ. Sci. Eng. 2020, 15, 64.

[22]

Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

[23]

Vatanpour, V.; Madaeni, S. S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci. 2011, 375, 284–294.

[24]

Zhao, S.; Zhu, H. T.; Wang, H.; Rassu, P.; Wang, Z.; Song, P.; Rao, D. W. Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. J. Hazard. Mater. 2019, 366, 659–668.

[25]
Zhang, M. H. Efficient removal of heavy metals in wastewater by a PVDF-based composite membrane adsorbent. Master Degree Thesis, Changji University, Changji, China, 2023.
[26]

Ding, Y. B.; Zhu, W. H.; Xie, Y. S. Development of ion chemosensors based on porphyrin analogues. Chem. Rev. 2017, 117, 2203–2256.

[27]

Shi, Y. Y.; Zhang, F. M.; Linhardt, R. J. Porphyrin-based compounds and their applications in materials and medicine. Dyes Pigm. 2021, 188, 109136.

[28]

Chen, W.; Wang, Y.; Brückner, C.; Li, C. M.; Lei, Y. Poly[ meso-tetrakis(2-thienyl) porphyrin] for the sensitive electrochemical detection of explosives. Sens. Actuators B: Chem. 2010, 147, 191–197.

[29]

Wu, L.; Feng, L. Y.; Ren, J. S.; Qu, X. G. Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens. Bioelectron. 2012, 34, 57–62.

[30]

Qu, B.; Luo, Y. C. Chitosan-based hydrogel beads: Preparations, modifications, and applications in food and agriculture sectors-a review. Int. J. Biol. Macromol. 2020, 152, 437–448.

[31]

Zhu, C. L.; Shi, J. J.; Sun, D. F.; Zhang, H.; Qi, S. L. Study on preparation of carboxymethyl chitosan and its application to the preservation. Chin. Wild Plant Resour. 2010, 29, 41–45.

[32]

Babakhani, A.; Sartaj, M. Removal of cadmium (II) from aqueous solution using tripolyphosphate cross-linked chitosan. J. Environ. Chem. Eng. 2020, 8, 103842.

[33]
Wang, L. Study on the preparation of EDTA-chitosan and adsorption of Cd2+ and Pb2+. Master Degree Thesis, Guangdong Ocean University, Zhanjiang, China, 2013.
[34]

Ngah, W. S. W.; Fatinathan, S. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies. J. Environ. Manage. 2010, 91, 958–969.

[35]

Lü, X. F.; Lü, D.; Shahzad, M. A.; Wang, J. H.; Chang, J. F.; Li, T. Study on the fluorescence detection of Hg2+ in water by 5, 10, 15, 20-tetra-(4-carboxyphenyl) porphyrin (TCPP). Appl. Chem. Ind. 2019, 48, 3054–3057.

[36]

Luo, W. Q.; Bai, Z. S.; Zhu, Y. Fast removal of Co(II) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism. RSC Adv. 2018, 8, 13370–13387.

[37]

Feng, B.; Peng, J. X.; Guo, W.; Luo, G. D.; Zhang, W. P.; Wang, H. H. The depression behavior and mechanism of carboxymethyl chitosan on calcite flotation. J. Mater. Res. Technol. 2019, 8, 1036–1040.

[38]

Luo, J. J.; Niu, Q.; Jin, M. C.; Cao, Y. N.; Ye, L. R.; Du, R. P. Study on the effects of oxygen-containing functional groups on Hg0 adsorption in simulated flue gas by XAFS and XPS analysis. J. Hazard. Mater. 2019, 376, 21–28.

[39]

Biesaga, M.; Pyrzyńska, K.; Trojanowicz, K. Porphyrins in analytical chemistry. A review. Talanta 2000, 51, 209–224.

[40]

Shirmardi-Dezaki, A.; Shamsipur, M.; Akhond, M.; Sharghi, H. Cyanide selective electrodes based on a porphyrinatoiron(III) chloride derivative. J. Electroanal. Chem. 2013, 689, 63–68.

[41]

Fu, J. W.; Xin, Q. Q.; Wu, X. C.; Chen, Z. H.; Yan, Y.; Liu, S. J.; Wang, M. H.; Xu, Q. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. J. Colloid Interface Sci. 2016, 461, 292–304.

[42]

Sun, Y. B.; Ding, C. C.; Cheng, W. C.; Wang, X. K. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J. Hazard. Mater. 2014, 280, 399–408.

[43]

Chaudhry, S. A.; Zaidi, Z.; Siddiqui, S. I. Isotherm, kinetic and thermodynamics of arsenic adsorption onto iron-zirconium binary oxide-coated sand (IZBOCS): Modelling and process optimization. J. Mol. Liq. 2017, 229, 230–240.

[44]

Knocke, W. R.; Hemphill, L. H. Mercury (II) sorption by waste rubber. Water Res. 1981, 15, 275–282.

[45]

Carro, L.; Anagnostopoulos, V.; Lodeiro, P.; Barriada, J. L.; Herrero, R.; Sastre De Vicente, M. E. A dynamic proof of mercury elimination from solution through a combined sorption-reduction process. Bioresour. Technol. 2010, 101, 8969–8974.

Nano Research
Pages 9965-9970
Cite this article:
Ma Y, Liu X, Fu Z, et al. Sensitive and environmental friendly sensor on porphyrin functionalized chitosan fiber membrane for Hg2+. Nano Research, 2024, 17(11): 9965-9970. https://doi.org/10.1007/s12274-024-6890-0
Topics:

459

Views

0

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 13 May 2024
Revised: 02 July 2024
Accepted: 16 July 2024
Published: 22 August 2024
© Tsinghua University Press, corrected publication 2024
Return