AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Phenylboronic-tannin nanocolloids that scavenge subchondral reactive oxygen microenvironment and inhibit RANKL induced osteoclastogenesis for osteoarthritis treatment

Xiaoqun Li2Yufang Kou1Jia Jia1Minchao Liu1Runze Gao2Yuhong Li2Gang Li2Shuogui Xu2Wei Song3Yang Xie2( )Xiaomin Li1( )Tiancong Zhao1( )
School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, China
Department of Orthopaedics Trauma and Department of Ophthalmology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Show Author Information

Graphical Abstract

Abstract

The excessive reactive oxygen species (ROS) accumulation and overactivated osteoclastogenesis in subchondral bone has proved to be a major cause of osteoarthritis (OA). Scavenging of ROS microenvironment to inhibit the osteoclastogenesis is highly valued in the therapeutic process of osteoarthritis. Despite the excellent ability of polyphenolic colloidal to scavenge reactive oxygen species and its affinity for macrophages, the preparation of polyphenolic colloidal nanoparticles is limited by the complex intermolecular forces between phenol molecules and the lack of understanding of polymerization/sol-gel chemistry. Herein, our work introduces a novel poly-tannin-phenylboronic colloidal nanoparticle (PTA) exclusively linked by ROS-responsive bondings. Nanocolloidal PTA has a uniform particle size, is easy and scalable to synthesize, has excellent scavenging of ROS, and can be slowly degraded. For in vitro experiments, we demonstrated that, PTA could eliminate ROS within RAW264.7 cells and impede osteoclastogenesis and bone resorption. RNA sequencing results of PTA-treated RAW264.7 cells further reveal the promotion of antioxidant activity and inhibition of osteoclastogenesis. For in vivo experiments, PTA could eliminate the ROS environment and reduce the number of osteoclasts in the subchondral bone, thereby alleviating the damage of subchondral bone and symptoms of osteoarthritis. Our research, by delving into the formation of polyphenol colloidal nanoparticles and validating their role in ROS scavenging to inhibit osteoclastogenesis in subchondral bone, may open new avenues for OA treatment in the future.

Electronic Supplementary Material

Download File(s)
6891_ESM.pdf (1,000.1 KB)

References

[1]

Wang, Y. Y.; Jones, G.; Keen, H. I.; Hill, C. L.; Wluka, A. E.; Kasza, J.; Teichtahl, A. J.; Antony, B.; O'Sullivan, R.; Cicuttini, F. M. Methotrexate to treat hand osteoarthritis with synovitis (METHODS): An Australian, multisite, parallel-group, double-blind, randomised, placebo-controlled trial. Lancet 2023, 402, 1764–1772.

[2]

Nielsen, R. L.; Monfeuga, T.; Kitchen, R. R.; Egerod, L.; Leal, L. G.; Schreyer, A. T. H.; Gade, F. S.; Sun, C.; Helenius, M.; Simonsen, L. et al. Data-driven identification of predictive risk biomarkers for subgroups of osteoarthritis using interpretable machine learning. Nat. Commun. 2024, 15, 2817.

[3]

Bittner, N.; Shi, C. F.; Zhao, D. Y.; Ding, J.; Southam, L.; Swift, D.; Kreitmaier, P.; Tutino, M.; Stergiou, O.; Cheung, J. T. S. et al. Primary osteoarthritis chondrocyte map of chromatin conformation reveals novel candidate effector genes. Ann. Rheum. Dis. 2024, 83, 1048–1059.

[4]

Hinman, R. S.; Campbell, P. K.; Kimp, A. J.; Russell, T.; Foster, N. E.; Kasza, J.; Harris, A.; Bennell, K. L. Telerehabilitation consultations with a physiotherapist for chronic knee pain versus in-person consultations in Australia: The PEAK non-inferiority randomised controlled trial. Lancet 2024, 403, 1267–1278.

[5]

Zhou, J.; Zhang, Z. Y.; Joseph, J.; Zhang, X. C.; Ferdows, B. E.; Patel, D. N.; Chen, W.; Banfi, G.; Molinaro, R.; Cosco, D. et al. Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration 2021, 1, 20210011.

[6]

Davis, L. C.; Diianni, A. T.; Drumheller, S. R.; Elansary, N. N.; D'Ambrozio, G. N.; Herrawi, F.; Piper, B. J.; Cosgrove, L. Undisclosed financial conflicts of interest in DSM-5-TR: Cross sectional analysis. BMJ 2024, 384, e076902.

[7]

Duong, V.; Oo, W. M.; Ding, C. H.; Culvenor, A. G.; Hunter, D. J. Evaluation and treatment of knee pain: A review. JAMA 2023, 330, 1568–1580.

[8]

Fu, W. Y.; Vasylyev, D.; Bi, Y. F.; Zhang, M. S.; Sun, G. D.; Khleborodova, A.; Huang, G. W.; Zhao, L. B.; Zhou, R. P.; Li, Y. G. et al. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis. Nature 2024, 625, 557–565.

[9]

Zou, Z. J.; Li, H.; Yu, K.; Ma, K.; Wang, Q. G.; Tang, J. N.; Liu, G. Z.; Lim, K.; Hooper, G.; Woodfield, T. et al. The potential role of synovial cells in the progression and treatment of osteoarthritis. Exploration 2023, 3, 20220132.

[10]

Yang, D. L.; Xu, J. W.; Xu, K.; Xu, P. Skeletal interoception in osteoarthritis. Bone Res. 2024, 12, 22.

[11]

Zheng, L. M.; Zhao, S.; Li, Y. X.; Xu, J. K.; Yan, W. J.; Guo, B. S.; Xu, J. B.; Jiang, L. F.; Zhang, Y. E.; Wei, H. et al. Engineered MgO nanoparticles for cartilage-bone synergistic therapy. Sci. Adv. 2024, 10, eadk6084.

[12]

Tian, H. S.; Gu, C. H.; Li, W. S.; Tong, T.; Wang, Y. S.; Yang, Y.; Wang, H. L.; Dai, Z. Q.; Chen, P. F.; Wang, F. et al. Neutralization of intracellular pH homeostasis to inhibit osteoclasts based on a spatiotemporally selective delivery system. Nano Lett. 2023, 23, 4101–4110.

[13]

Ro, D. H.; Cho, G. H.; Kim, J. Y.; Min, S. K.; Yang, H. R.; Park, H. J.; Wang, S. Y.; Kim, Y. J.; Lee, M. C.; Bae, H. C. et al. Selective targeting of dipeptidyl-peptidase 4 (DPP-4) positive senescent chondrocyte ameliorates osteoarthritis progression. Aging Cell 2024, e14161.

[14]
Guan, Z. Y.; Liu, Y. B.; Luo, L. Y.; Jin, X.; Guan, Z. Q.; Yang, J. J.; Liu, S. F.; Tao, K.; Pan, J. F. Sympathetic innervation induces exosomal miR-125 transfer from osteoarthritic chondrocytes, disrupting subchondral bone homeostasis and aggravating cartilage damage in aging mice. J. Adv. Res., in press, DOI: 10.1016/j.jare.2024.03.022.
[15]

Wittoek, R.; Verbruggen, G.; Vanhaverbeke, T.; Colman, R.; Elewaut, D. RANKL blockade for erosive hand osteoarthritis: a randomized placebo-controlled phase 2a trial. Nat. Med. 2024, 30, 829–836.

[16]

Xin, X. R.; Liu, J. J.; Liu, X. C.; Xin, Y.; Hou, Y. B.; Xiang, X. C.; Deng, Y.; Yang, B.; Yu, W. X. Melatonin-derived carbon dots with free radical scavenging property for effective periodontitis treatment via the Nrf2/HO-1 pathway. ACS Nano 2024, 18, 8307–8324.

[17]

Zuo, G. L.; Zhuang, P. Z.; Yang, X. H.; Jia, Q.; Cai, Z. W.; Qi, J.; Deng, L. F.; Zhou, Z. H.; Cui, W. G.; Xiao, J. R. Regulating chondro-bone metabolism for treatment of osteoarthritis via high-permeability Micro/Nano hydrogel microspheres. Adv. Sci. 2024, 11, 2305023.

[18]

Zhou, T.; Xiong, H.; Yao, S. Y.; Wang, S. Q.; Li, S. F.; Chang, J. T.; Zhai, Z. H.; Guo, D. S.; Fan, C. Y.; Gao, C. Y. Hypoxia and Matrix metalloproteinase 13-responsive hydrogel microspheres alleviate osteoarthritis progression in vivo. Small 2024, 20, 2308599.

[19]

Durán-Sotuela, A.; Fernandez-Moreno, M.; Suárez-Ulloa, V.; Vázquez-García, J.; Relaño, S.; Hermida-Gómez, T.; Balboa-Barreiro, V.; Lourido-Salas, L.; Calamia, V.; Fernandez-Puente, P. et al. A meta-analysis and a functional study support the influence of mtDNA variant m.16519C on the risk of rapid progression of knee osteoarthritis. Ann. Rheum. Dis. 2023, 82, 974–984.

[20]

Jin, C.; Yu, X. B.; Yang, J. Y.; Lin, Z.; Ma, R. X.; Lin, B. H.; Zhang, H. J.; Dai, Z. H.; Xue, K. K.; Xie, C. L. et al. Corynoline suppresses osteoclastogenesis and attenuates ROS activities by regulating NF-κB/MAPKs and Nrf2 signaling pathways. J. Agric. Food Chem. 2024, 72, 8149–8166.

[21]
Kong, X. X.; Tao, S. Y.; Ji, Z. Y.; Li, J.; Li, H.; Jin, J. Y.; Zhao, Y. H.; Liu, J. H.; Zhao, F. D.; Chen, J.; Feng, Z. H.; Chen, B. H.; Shan, Z. FATP2 regulates Osteoclastogenesis by increasing lipid metabolism and ROS production. J. Bone Miner. Res., in press, DOI: 10.1093/jbmr/zjae034.
[22]

Wang, S. L.; Nikamo, P.; Laasonen, L.; Gudbjornsson, B.; Ejstrup, L.; Iversen, L.; Lindqvist, U.; Alm, J. J.; Eisfeldt, J.; Zheng, X. W. et al. Tapia-Paez, Rare coding variants in NOX4 link high ROS levels to psoriatic arthritis mutilans. EMBO Mol. Med. 2024, 16, 596–615.

[23]

Liu, S. T.; Zhang, C.; Zhou, Y. Y.; Zhang, F.; Duan, X. H.; Liu, Y.; Zhao, X. B.; Liu, J.; Shuai, X. T.; Wang, J. L. et al. MRI-visible mesoporous polydopamine nanoparticles with enhanced antioxidant capacity for osteoarthritis therapy. Biomaterials 2023, 295, 122030.

[24]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[25]

Cheng, X. J.; Li, M. Y.; Wang, H.; Cheng, Y. Y. All-small-molecule dynamic covalent gels with antibacterial activity by boronate-tannic acid gelation. Chin. Chem. Lett. 2020, 31, 869–874.

[26]

Zheng, L. M.; Zhuang, Z. K.; Li, Y. X.; Shi, T. S.; Fu, K.; Yan, W. J.; Zhang, L.; Wang, P.; Li, L.; Jiang, Q. Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis. Bioact. Mater. 2022, 14, 250–261.

[27]

Lv, Z. Y.; Wang, P.; Li, W. T.; Xie, Y.; Sun, W.; Jin, X. Y.; Jiang, R. Y.; Fei, Y. X.; Liu, Y.; Shi, T. S. et al. Bifunctional TRPV1 targeted magnetothermal switch to attenuate osteoarthritis progression. Research 2024, 7, 0316.

[28]

Huang, T.; Zhang, T. Y.; Jiang, X. C.; Li, A.; Su, Y. Q.; Bian, Q.; Wu, H. H.; Lin, R. Y.; Li, N.; Cao, H. C. et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci. Adv. 2021, 7, eabj0534.

Nano Research
Cite this article:
Li X, Kou Y, Jia J, et al. Phenylboronic-tannin nanocolloids that scavenge subchondral reactive oxygen microenvironment and inhibit RANKL induced osteoclastogenesis for osteoarthritis treatment. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6891-z
Topics:

304

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 May 2024
Revised: 15 July 2024
Accepted: 15 July 2024
Published: 13 August 2024
© Tsinghua University Press 2024
Return