AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mito-specific cascade amplifier sniping metabolism homeostasis for multimodal imaging-guided antitumor bioenergetic therapy

Jingjing Yang1Yuanlin Zhang2Maoquan Chu3Jin Qian4Jie Liu3Manyu Wang3Zhe Qiang4( )Jie Ren1( )
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 20092, China
118 College Dr, School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
Show Author Information

Graphical Abstract

A mitochondrial-specific cascade generator enables synchronous disruption of nicotinamide adenine dinucleotide (NAD+/NADH) pools homeostasis and mitochondrial metabolism for magnetic resonance/photoacoustic (MR/PA) imaging-guided antitumor bioenergetic therapy.

Abstract

Nicotinamide adenine dinucleotide (NAD+/NADH) pools homeostasis is recognized as an Achilles’ Heel in tumor metabolism reprogramming. However, mitochondria can enable cancer cells to overcome NADH exhaustion by providing NAD+ precursors and/or intermediates, thus promoting their survival rate and potentially driving uncontrollable proliferation. Here, a synergistic intervention NAD+/NADH homeostasis and mitochondrial metabolism strategy with magnetic resonance imaging (MRI)/photoacoustic imaging (PAI) are developed to address grand challenge of metabolic reprogramming for antitumor bioenergetic therapy. A mitochondrial-targeted cascade amplification nanoplatform ([β-MQ]TRL), triggered by NAD(P)H: quinone oxidoreductase-1 (NQO1), can enable a continuous depletion of cytosol NADH until cell death. The end-product, hydrogen peroxide (H2O2), can be further catalytically converted to higher toxic ·OH in proximity to mitochondria based on [β-MQ]TRL mediated Fenton-like reaction, hijacking tumorigenic energy sources and leading to mitochondrial dysfunction. Additionally, the mild thermal ablation enabled by [β-MQ]TRL further amplifies this cascade reaction to effectively prevent tumor metastasis and recurrence. This synchronous intervention strategy with MRI/PAI establishes unprecedented efficiency in antitumor bioenergetic therapy in vivo, which shows excellent promise for clinical application.

Electronic Supplementary Material

Download File(s)
6892_ESM.pdf (2.9 MB)

References

[1]

Schiliro, C.; Firestein, B. L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021, 10, 1056.

[2]

Fendt, S. M.; Frezza, C.; Erez, A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 2020, 10, 1797–1807.

[3]

DeBerardinis, R. J.; Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200.

[4]

Stine, Z. E.; Schug, Z. T.; Salvino, J. M.; Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022, 21, 141–162.

[5]

Elia, I.; Haigis, M. C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab. 2021, 3, 21–32.

[6]

Zhao, H. N.; Zou, Y. Y.; Wang, W.; Liu, Y. H.; Li, Y. Q.; Jin, B. W.; Li, J. H.; Chen, W. S.; Liu, Y. N. Nanotandem-rocket releases messenger to disrupt metabolic communication for antitumor immunotherapy. Nano Res. 2023, 16, 7095–7107.

[7]

Martinez-Outschoorn, U. E.;Peiris-Pagés, M.;Pestell, R. G.;Sotgia, F.; Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 2017, 14, 11–31.

[8]

Jin, J.; Byun, J. K.;Choi, Y. K.; Park, K. G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715.

[9]

Martínez-Reyes, I.; Chandel, N. S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680.

[10]

Liu, X.; Li, J. K.; Zitolo, A.; Gao, M.; Jiang, J.; Geng, X. T.; Xie, Q. Q.; Wu, D.; Zheng, H. Z.; Cai, X. M. et al. Doped graphene to mimic the bacterial nadh oxidase for one-step NAD+ supplementation in mammals. J. Am. Chem. Soc. 2023, 145, 3108–3120.

[11]

Ju, H. Q.; Lu, Y. X.; Wu, Q. N.; Liu, J.; Zeng, Z. L.; Mo, H. Y.; Chen, Y.; Tian, T.; Wang, Y.; Kang, T. B. et al. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene 2017, 36, 6282–6292.

[12]

Liu, R. L.; Li, W. F.; Tao, B. B.; Wang, X. J.; Yang, Z.; Zhang, Y. J.; Wang, C. Y.; Liu, R. Z.; Gao, H.; Liang, J. et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat. Commun. 2019, 10, 991.

[13]

Chiarugi, A.; Dölle, C.; Felici, R.; Ziegler, M. The NAD metabolome-a key determinant of cancer cell biology. Nat. Rev. Cancer 2012, 12, 741–752.

[14]

Xie, N.; Zhang, L.; Gao, W.; Huang, C. H.; Huber, P. E.; Zhou, X. B.; Li, C. L.; Shen, G. B.; Zou, B. W. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2020, 5, 227.

[15]

Cantó, C.; Menzies, K. J.; Auwerx, J. NAD+ Metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab. 2015, 22, 31–53.

[16]

Alano, C. C.; Garnier, P.; Ying, W. H.; Higashi, Y.; Kauppinen, T. M.; Swanson, R. A. NAD+ depletion is necessary and sufficient forPoly(ADP-Ribose) polymerase-1-mediated neuronal death. J. Neurosci. 2010, 30, 2967–2978.

[17]

Wei, Q. Y.; Qian, Y.; Yu, J.; Wong, C. C. Metabolic rewiring in the promotion of cancer metastasis: Mechanisms and therapeutic implications. Oncogene 2020, 39, 6139–6156.

[18]

Cheung, E. C.; Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297.

[19]

Faria, A. R.; Silvestre, O. F.; Maibohm, C.; Adão, R. M. R.; Silva, B. F. B.; Nieder, J. B. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging. Nano Res. 2019, 12, 991–998.

[20]

Gong, Q. J.; Hu, J. B.; Wang, P. F.; Li, X.; Zhang, X. J. A comprehensive review on β-lapachone: Mechanisms, structural modifications, and therapeutic potentials. Eur. J. Med. Chem. 2021, 210, 112962.

[21]

Gong, Q. J.; Li, X.; Li, T.; Wu, X. S.; Hu, J. B.; Yang, F. L.; Zhang, X. J. A carbon-carbon bond cleavage-based prodrug activation strategy applied to β-lapachone for cancer-specific targeting. Angew Chem., Int. Ed. 2022, 61, e202210001.

[22]

Gong, X. D.; Wang, J.; Yang, L. L.; Li, L. J.; Gao, X. Y.; Sun, X.; Bai, J. F.; Liu, J. C.; Pu, X.; Wang, Y. D. Enhanced chemodynamic therapy mediated by a tumor-specific catalyst in synergy with mitophagy inhibition improves the efficacy for endometrial cancer. Small 2023, 19, 2301497.

[23]

Li, X. G.; Liu, Z. D.; Zhang, A. L.; Han, C. H.; Shen, A. J.; Jiang, L. X.; Boothman, D. A.; Qiao, J.; Wang, Y.; Huang, X. M. et al. NQO1 targeting prodrug triggers innate sensing to overcome checkpoint blockade resistance. Nat. Commun. 2019, 10, 3251.

[24]

Pink, J. J.; Planchon, S. M.; Tagliarino, C.; Varnes, M. E.; Siegel, D.; Boothman, D. A. NAD(P)H: Quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxicity. J. Biol. Chem. 2000, 275, 5416–5424.

[25]

Li, Y. R.; Feng, M. Y.; Guo, T.; Wang, Z.; Zhao, Y. J. Tailored beta-lapachone nanomedicines for cancer-specific therapy. Adv. Healthc. Mater. 2023, 12, e2300349.

[26]

Gomes, C. L.; de Albuquerque Wanderley Sales, V.; de Melo, C. G.; da Silva, R. M. F.; Nishimura, R. H. V.; Rolim, L. A.; Neto, P. J. R. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. Phytochemistry 2021, 186, 112713.

[27]

VanLinden, M. R.;Dölle, C.;Pettersen, I. K.;Kulikova, V. A.;Niere, M.;Agrimi, G.;Dyrstad, S. E.;Palmieri, F.;Nikiforov, A. A.;Tronstad, K. J.; Ziegler, M. Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells. J. Biol. Chem. 2015, 290, 27644–27659.

[28]

Pittelli, M.; Formentini, L.; Faraco, G.; Lapucci, A.; Rapizzi, E.; Cialdai, F.; Romano, G.; Moneti, G.; Moroni, F.; Chiarugi, A. Inhibition of nicotinamide phosphoribosyltransferase: Cellular bioenergetics reveals a mitochondrial insensitive nad pool. J. Biol. Chem. 2010, 285, 34106–34114.

[29]

Stein, L. R.; Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 2012, 23, 420–428.

[30]

Yang, H. Y.; Yang, T. L.; Baur, J. A.; Perez, E.; Matsui, T.; Carmona, J. J.; Lamming, D. W.; Souza-Pinto, N. C.; Bohr, V. A.; Rosenzweig, A. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007, 130, 1095–1107.

[31]

Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 2010, 9, 447–464.

[32]

Li, Z.; Zou, J. H.; Chen, X. Y. In response to precision medicine: Current subcellular targeting strategies for cancer therapy. Adv. Mater. 2023, 35, 2209529.

[33]

Chen, C.; Li, Q. Y.; Xing, L. Y.; Zhou, M. L.; Luo, C. H.; Li, S. J.; Li, L.; Huang, Y. Co-delivery of mitochondrial targeted lonidamine and PIN1 inhibitor ATRA by nanoparticulate systems for synergistic metastasis suppression. Nano Res. 2022, 15, 3376–3386.

[34]

Qu, H. J.; Chen, H.; Cheng, W.; Pan, Y. Q.; Duan, Z. R.; Wang, Y. J.; Liang, X. J.; Xue, X. D. Charge-reversible crosslinked nanoparticle for pro-apoptotic peptide delivery and synergistic photodynamic cancer therapy. Nano Res. 2023, 16, 13267–13282.

[35]

Yang, J. J.; Griffin, A.; Qiang, Z.; Ren, J. Organelle-targeted therapies: A comprehensive review on system design for enabling precision oncology. Signal Transduct. Target. Ther. 2022, 7, 379.

[36]
Cheng, Y. X.; Qu, Z.; Jiang, Q.; Xu, T. T.; Zheng, H. Y.; Ye, P.; He, M. D.; Tong, Y. Q.; Ma, Y.; Bao, A. Y. Functional materials for subcellular targeting strategies in cancer therapy: Progress and prospects. Adv. Mater., in press, DOI: 10.1002/adma.202305095.
[37]

Li, X. L.; Duan, Z. Y.; Chen, X. T.; Pan, D. Y.; Luo, Q.; Gu, L.; Xu, G.; Li, Y. G.; Zhang, H.; Gong, Q. Y. et al. Impairing tumor metabolic plasticity via a stable metal-phenolic-based polymeric nanomedicine to suppress colorectal cancer. Adv. Mater. 2023, 35, e2300548.

[38]

Chen, W. H.; Luo, G. F.; Zhang, X. Z. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv. Mater. 2019, 31, 1802725.

[39]

Song, X. Y.; Li, F. Y.; Tian, F.; Ren, L. L.; Wang, Q.; Jiang, C. F.; Yan, T.; Zhang, S. S. Upconversion nanoparticle-based optogenetic nanosystem for photodynamic therapy and cascade gene therapy. Acta Biomater. 2023, 157, 538–550.

[40]

Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Zheng, X. L.; Chen, S. Q.; Wen, Y. M.; Zhang, H. Y.; Wang, P. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018, 30, e1706090.

[41]

Valencia, P. M.; Hanewich-Hollatz, M. H.; Gao, W. W.; Karim, F.; Langer, R.; Karnik, R.; Farokhzad, O. C. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 2011, 32, 6226–6233.

[42]

Wang, X. Z.; Wang, L.; Jin, T. D.; Sun, K. J.; Yang, J. Y. pH/Viscosity dual-response fluorescent probes as highly selective tumor visualization tools. Sens. Actuators, B 2023, 375, 132935.

[43]

Wang, Y. D.; Gao, F. C.; Li, X. F.; Niu, G. M.; Yang, Y. F.; Li, H.; Jiang, Y. Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnol. 2022, 20, 69.

[44]

Wu, Y.; Guo, T.; Qiu, Y.; Lin, Y.; Yao, Y. Y.; Lian, W. B.; Lin, L. S.; Song, J. B.; Yang, H. H. An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy. Chem. Sci. 2019, 10, 7068–7075.

[45]

Sharma, L. K.; Lu, J. X.; Bai, Y. D. Mitochondrial respiratory complex I: Structure, function and implication in human diseases. Curr. Med. Chem. 2009, 16, 1266–1277.

[46]

Vercellino, I.; Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022, 23, 141–161.

[47]

Zhao, R. Z.; Jiang, S.; Zhang, L.; Yu, Z. B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15.

[48]

Murphy, M. P.; Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discovery 2018, 17, 865–886.

[49]

Weinberg, S. E.; Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015, 11, 9–15.

[50]

Navas, L. E.; Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct. Target. Ther. 2021, 6, 2.

[51]

Ralto, K. M.; Rhee, E. P.; Parikh, S. M. NAD+ homeostasis in renal health and disease. Nat. Rev. Nephrol. 2020, 16, 99–111.

[52]

Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy. Nat. Rev. Cancer 2016, 16, 635–649.

[53]

Ji, S. H.; Chen, Y. D.; Zhao, X. L.; Cai, Y. Y.; Zhang, X. P.; Sun, F. L.; Chen, Q.; Deng, Q. M.; Wang, C. H.; Ma, K. et al. Surface morphology and payload synergistically caused an enhancement of the longitudinal relaxivity of a Mn3O4/PtOx nanocomposite for magnetic resonance tumor imaging. Biomater. Sci. 2021, 9, 2732–2742.

[54]

Steinberg, I.; Huland, D. M.; Vermesh, O.; Frostig, H. E.; Tummers, W. S.; Gambhir, S. S. Photoacoustic clinical imaging. Photoacoustics 2019, 14, 77–98.

[55]

Mogol, A. N.; Kaminsky, A. Z.; Dutton, D. J.; Erdogan, Z. M. Targeting NAD+ metabolism: Preclinical insights into potential cancer therapy strategies. Endocrinology 2024, 165, bqae043.

[56]

Navas, L. E.; Carnero, A. Nicotinamide adenine dinucleotide (NAD) metabolism as a relevant target in cancer. Cells 2022, 11, 2627.

[57]

Kennedy, B. E.; Giacomantonio, M.; Murphy, J. P.; Cutler, S.; Sadek, M.; Konda, P.; Paulo, J. A.; Pathak, G. P.; Renkens, S. H. J.; Grieve, S. et al. NAD+ depletion enhances reovirus-induced oncolysis in multiple myeloma. Mol. Ther. Oncolytics 2022, 24, 695–706.

[58]

Shi, X. L.; Zhang, W.; Gu, C.; Ren, H. G.; Wang, C.; Yin, N. R.; Wang, Z. M.; Yu, J. H.; Liu, F. J.; Zhang, H. W. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radical Biol. Med. 2021, 162, 514–522.

Nano Research
Pages 9908-9919
Cite this article:
Yang J, Zhang Y, Chu M, et al. Mito-specific cascade amplifier sniping metabolism homeostasis for multimodal imaging-guided antitumor bioenergetic therapy. Nano Research, 2024, 17(11): 9908-9919. https://doi.org/10.1007/s12274-024-6892-y
Topics:

313

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 May 2024
Revised: 09 July 2024
Accepted: 15 July 2024
Published: 16 August 2024
© Tsinghua University Press 2024
Return