AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing the Al deficiency in Si-O(H)-Al units based on Pt/ZSM-5 for enhanced hydrocracking of polyethylene into high-quality liquid fuel

Xia Zhong1,2Jie Liu1,3Li Gao1,2Junnan Chen1,2Xiyang Wang4Ying Zhang1,5Yimin A. Wu4Mozaffar Shakeri6Xia Zhang3Bingsen Zhang1,2( )
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
Laboratory of Heterogeneous Catalysis Department of Chemical and Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran 16363, Iran
Show Author Information

Graphical Abstract

We introduce Al deficiency in Si-O(H)-Al structural units of Pt/zeolite socony mobil-5 (Pt/ZSM-5) through discharge driven reduction (DR) process to precisely control the ratio of metal to acid, achieving hydrocracking of low-density polyethylene (LDPE) waste at 270 °C with 87.7% conversion and liquid fuel (C5-C21) selectivity of 77.8%. Pair distribution function (PDF) demonstrates the partial absent Al sites further resulting short-range local disorder Si-O(H)-Al. This work confirms the great potential of precisely controlled molar of metal to acid in metal/zeolite catalysts for LDPE upcycling.

Abstract

Hydrocracking catalysis is a controllable route to plastic waste upgrading. However, the mismatched acid site-driven C–C cleavage and C=C hydrogenation process on metal restrict the efficiency and selectivity in conventional metal/acid bi-functional catalyst. Herein, we introduce Al deficiency in Si-O(H)-Al structural units of Pt/zeolite socony mobil-5 (Pt/ZSM-5) through discharge driven reduction (DR) process to precisely control the ratio of metal to acid, achieving hydrocracking of low-density polyethylene (LDPE) waste at 270 °C with 87.7% conversion and liquid fuel (C5-C21) selectivity of 77.8%. Pair distribution function (PDF) and nuclear magnetic resonance (NMR) spectroscopy demonstrate the partial absent Al sites further resulting short-range local disorder Si-O(H)-Al. Upon pyridine infrared spectroscopy (Py-IR) and CO diffuse reflectance Fourier-transform infrared (CO DRIFT) analysis, the extraction of Al modulates Brønsted acid density of Pt/ZSM-5 with DR process (Pt/Z5DR), improves the interaction between Pt and ZSM-5 support, enhances the cationic of Pt. The metal-acid balance and electron-deficient Pt favor the matching speed of light olefins hydrogenation and the cracking of macromolecule intermediates. Moreover, density functional theory (DFT) calculations identify the thermodynamic stability of Pt/Z5DR and moderate adsorption capability towards light olefins. This work confirms the great potential of precisely controlled molar of metal to acid in metal/zeolite catalysts for LDPE upcycling, providing a viable path for dealing with PE plastic wastes.

Electronic Supplementary Material

Download File(s)
6894_ESM.pdf (2.5 MB)

References

[1]

Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.

[2]

Du, J. J.; Zeng, L.; Yan, T.; Wang, C. H.; Wang, M. L.; Luo, L.; Wu, W. L.; Peng, Z. J.; Li, H. L.; Zeng, J. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nat. Nanotechnol. 2023, 18, 772–779.

[3]

Vollmer, I.; Jenks, M. J. F.; Roelands, M. C. P.; White, R. J.; van Harmelen, T.; de Wild, P.; van der Laan, G. P.; Meirer, F.; Keurentjes, J. T. F.; Weckhuysen, B. M. Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem., Int. Ed. 2020, 59, 15402–15423.

[4]

Duan, J. D.; Chen, W.; Wang, C. T.; Wang, L.; Liu, Z. Q.; Yi, X. F.; Fang, W.; Wang, H.; Wei, H.; Xu, S. D. et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. J. Am. Chem. Soc. 2022, 144, 14269–14277.

[5]

Jie, X. Y.; Li, W. S.; Slocombe, D.; Gao, Y. G.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B. Z.; AlMegren, H.; Alshihri, S.; Dilworth, J. et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 2020, 3, 902–912.

[6]

Cao, Q.; Cheng, X. F.; Wang, J.; Zhou, C.; Yang, L. J.; Wang, G.; Chen, D. Y.; He, J. H.; Lu, J. M. Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chin. Chem. Lett. 2024, 35, 108759.

[7]

Zhou, X. Y.; Liu, Q. Y.; Xu, G. Q.; Yang, R. L.; Sun, H. G.; Wang, Q. G. Chemical upcycling of poly(lactide) plastic waste to lactate ester, lactide and new poly(lactide) under Mg-catalysis condition. Chin. Chem. Lett. 2023, 34, 108158.

[8]

Chen, Z. J.; Zheng, R. J.; Bao, T.; Ma, T. Y.; Wei, W.; Shen, Y. S.; Ni, B. J. Dual-doped nickel sulfide for electro-upgrading polyethylene terephthalate into valuable chemicals and hydrogen fuel. Nano-Micro Lett. 2023, 15, 210.

[9]

Li, L.; Luo, H.; Shao, Z. L.; Zhou, H. Z.; Lu, J. W.; Chen, J. J.; Huang, C. J.; Zhang, S. N.; Liu, X. F.; Xia, L. et al. Converting plastic wastes to naphtha for closing the plastic loop. J. Am. Chem. Soc. 2023, 145, 1847–1854.

[10]

Wang, W. J.; Yao, C.; Ge, X. H.; Pu, X.; Yuan, J. C.; Sun, W. X.; Chen, W. Y.; Feng, X.; Qian, G.; Duan, X. Z. et al. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: Insights into reaction pathways and rate-controlling step regulation. J. Mater. Chem. A 2023, 11, 14933–14940.

[11]

Wu, X.; Tennakoon, A.; Yappert, R.; Esveld, M.; Ferrandon, M. S.; Hackler, R. A.; LaPointe, A. M.; Heyden, A.; Delferro, M.; Peters, B. et al. Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. J. Am. Chem. Soc. 2022, 144, 5323–5334.

[12]

Zhou, Q. M.; Wang, D. L.; Wang, Q. Y.; He, K. L.; Lim, K. H.; Yang, X.; Wang, W. J.; Li, B. G.; Liu, P. W. Mechanistic understanding of efficient polyethylene hydrocracking over two-dimensional platinum-anchored tungsten trioxide. Angew. Chem., Int. Ed. 2023, 62, e202305644.

[13]

Pyra, K.; Tarach, K. A.; Śrębowata, A.; Melián-Cabrera, I.; Góra-Marek, K. Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel. Appl. Catal. B: Environ. 2020, 277, 119070.

[14]

Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 2017, 73, 346–368.

[15]

Chen, Z. Z.; Xu, L. L.; Zhang, X. R. Upgrading of polyethylene to hydrocarbon fuels over the Fe-modified Pt/Al2O3 catalysts at a mild condition without external H2. Chem. Eng. J. 2022, 446, 136213.

[16]

Nakaji, Y.; Tamura, M.; Miyaoka, S.; Kumagai, S.; Tanji, M.; Nakagawa, Y.; Yoshioka, T.; Tomishige, K. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Appl. Catal. B: Environ. 2021, 285, 119805.

[17]

Kang, Q. Y.; Chu, M. Y.; Xu, P. P.; Wang, X. C.; Wang, S. Q.; Cao, M. H.; Ivasenko, O.; Sham, T. K.; Zhang, Q.; Sun, Q. M. et al. Entropy confinement promotes hydrogenolysis activity for polyethylene upcycling. Angew. Chem., Int. Ed. 2023, 62, e202313174.

[18]

Dong, Z. W.; Chen, W. J.; Xu, K. Q.; Liu, Y.; Wu, J.; Zhang, F. Understanding the structure–activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: A critical review. ACS Catal. 2022, 12, 14882–14901.

[19]

Zhao, M.; Wang, X.; Xu, J.; Li, Y. O.; Wang, X. M.; Chu, X.; Wang, K.; Wang, Z. J.; Zhang, L. L.; Feng, J. et al. Strengthening the metal-acid interactions by using CeO2 as regulators of precisely placing Pt species in ZSM-5 for furfural hydrogenation. Adv. Mater. 2024, 36, 2313596.

[20]

Wu, X. T.; Wang, X.; Zhang, L. L.; Wang, X. M.; Song, S. Y.; Zhang, H. J. Polyethylene upgrading to liquid fuels boosted by atomic Ce promoters. Angew. Chem., Int. Ed. 2024, 63, e202317594.

[21]

Choi, I. H.; Lee, H. J.; Rhim, G. B.; Chun, D. H.; Lee, K. H.; Hwang, K. R. Catalytic hydrocracking of heavy wax from pyrolysis of plastic wastes using Pd/Hβ for naphtha-ranged hydrocarbon production. J. Anal. Appl. Pyrolysis 2022, 161, 105424.

[22]

Vance, B. C.; Kots, P. A.; Wang, C.; Hinton, Z. R.; Quinn, C. M.; Epps, T. H.; Korley, L. T. J.; Vlachos, D. G. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl. Catal. B: Environ. 2021, 299, 120483.

[23]

Kumar, V.; Kawazoe, Y. Evolution of atomic and electronic structure of Pt clusters: Planar, layered, pyramidal, cage, cubic, and octahedral growth. Phys. Rev. B 2008, 77, 205418.

[24]

Chen, G. R.; Li, J. Y.; Wang, S.; Han, J.; Wang, X. X.; She, P. H.; Fan, W. B.; Guan, B. Y.; Tian, P.; Yu, J. H. Construction of single-crystalline hierarchical ZSM-5 with open nanoarchitectures via anisotropic-kinetics transformation for the methanol-to-hydrocarbons reaction. Angew. Chem. 2022, 134, e202200677.

[25]

Wu, L.; Xin, J. J.; Wang, Y. G.; Zhang, K. X.; Zhang, J. R.; Sun, J. L.; Zou, R. Q.; Liang, J. Hollow ZSM-5 encapsulated with single Ga-atoms for the catalytic fast pyrolysis of biomass waste. J. Energy Chem. 2023, 84, 363–373.

[26]

Wang, Z.; Wang, C. P.; Mao, S. J.; Lu, B.; Chen, Y. Z.; Zhang, X.; Chen, Z. R.; Wang, Y. Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nat. Commun. 2022, 13, 3561.

[27]

Wang, N.; Li, J.; Sun, W. J.; Hou, Y. L.; Zhang, L.; Hu, X. M.; Yang, Y. F.; Chen, X.; Chen, C. M.; Chen, B. H. et al. Rational design of zinc/zeolite catalyst: Selective formation of p-xylene from methanol to aromatics reaction. Angew. Chem., Int. Ed. 2022, 61, e202114786.

[28]

Jiao, Y. L.; Forster, L.; Xu, S. J.; Chen, H. H.; Han, J. F.; Liu, X. Q.; Zhou, Y. T.; Liu, J. M.; Zhang, J. S.; Yu, J. H. et al. Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity: Converting tetrahedral extra-framework Al into framework sites by post treatment. Angew. Chem., Int. Ed. 2020, 59, 19478–19486.

[29]

Nie, Y. Y.; Shang, S. N.; Xu, X.; Hua, W. M.; Yue, Y. H.; Gao, Z. In2O3-doped Pt/WO3/ZrO2 as a novel efficient catalyst for hydroisomerization of n-heptane. Appl. Catal. A: Gen. 2012, 433–434, 69–74.

[30]

Su, J. F.; Shi, W.; Liu, X. C.; Zhang, L. Y.; Cheng, S. B.; Zhang, Y.; Botton, G. A.; Zhang, B. S. Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. J. Catal. 2020, 388, 164–170.

[31]

Zhang, L. Y.; Zeng, T. T.; Zheng, L. W.; Wang, Y. R.; Yuan, W. Y.; Niu, M.; Guo, C. X.; Cao, D. P.; Li, C. M. Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction. Adv. Powder Mater. 2023, 2, 100131.

[32]

Gao, M. Q.; Zhou, W. Y.; Mo, Y. X.; Sheng, T.; Deng, Y. H.; Chen, L. Z.; Wang, K.; Tan, Y. L.; Zhou, H. Q. Outstanding long-cycling lithium-sulfur batteries by core–shell structure of S@Pt composite with ultrahigh sulfur content. Adv. Powder Mater. 2022, 1, 100006.

[33]

Liu, C.; Zhang, P. F.; Liu, B.; Meng, Q.; Yang, X. Z.; Li, Y. K.; Han, J. L.; Wang, Y. Long-range Pt-Ni dual sites boost hydrogen evolution through optimizing the adsorption configuration. Nano Res. 2024, 17, 3700–3706.

[34]

Zhou, J.; Zhang, Y.; Liu, H.; Xiong, C.; Hu, P.; Wang, H.; Chen, S. W.; Ji, H. B. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite. Nano Res. 2023, 16, 6537–6543.

[35]

Tian, J.; Tan, K. B.; Liao, Y. C.; Sun, D. H.; Li, Q. B. Hollow ZSM-5 zeolite encapsulating Pt nanoparticles: Cage-confinement effects for the enhanced catalytic oxidation of benzene. Chemosphere 2022, 292, 133446.

[36]

Alonso-Doncel, M.; Peral, A.; Ochoa-Hernández, C.; Sanz, R.; Serrano, D. P. Tracking the evolution of embryonic zeolites into hierarchical ZSM-5. J. Mater. Chem. A 2021, 9, 13570–13587.

[37]

Minami, A.; Hu, P. D.; Sada, Y.; Yamada, H.; Ohara, K.; Yonezawa, Y.; Sasaki, Y.; Yanaba, Y.; Takemoto, M.; Yoshida, Y. et al. Tracking sub-nano-scale structural evolution in zeolite synthesis by in situ high-energy X-ray total scattering measurement with pair distribution function analysis. J. Am. Chem. Soc. 2022, 144, 23313–23320.

[38]

Louwen, J. N.; van Eijck, L.; Vogt, C.; Vogt, E. T. C. Understanding the activation of ZSM-5 by phosphorus: Localizing phosphate groups in the pores of phosphate-stabilized ZSM-5. Chem. Mater. 2020, 32, 9390–9403.

[39]

Ikuno, T.; Chaikittisilp, W.; Liu, Z. D.; Iida, T.; Yanaba, Y.; Yoshikawa, T.; Kohara, S.; Wakihara, T.; Okubo, T. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process. J. Am. Chem. Soc. 2015, 137, 14533–14544.

[40]

Ma, Y.; Tang, X. M.; Hu, J. Y.; Ma, Y. H.; Chen, W.; Liu, Z. Q.; Han, S. C.; Xu, C.; Wu, Q. M.; Zheng, A. M. et al. Design of a small organic template for the synthesis of self-pillared pentasil zeolite nanosheets. J. Am. Chem. Soc. 2022, 144, 6270–6277.

[41]

Silaghi, M. C.; Chizallet, C.; Sauer, J.; Raybaud, P. Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J. Catal. 2016, 339, 242–255.

[42]

Chen, L. X.; Meyer, L. C.; Kovarik, L.; Meira, D.; Pereira-Hernandez, X. I.; Shi, H. H.; Khivantsev, K.; Gutiérrez, O. Y.; Szanyi, J. Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal. 2022, 12, 4618–4627.

[43]

Zhang, S. C.; Li, Y. F.; Ding, C. M.; Niu, Y. X.; Zhang, Y. F.; Yang, B.; Li, G. S.; Wang, J. W.; Ma, Z. L.; Yu, L. J. Atomic dispersion of Pt clusters encapsulated within ZSM-5 depending on aluminum sites and calcination temperature. Small Structures 2023, 4, 2200115.

[44]

Shi, L.; Deng, G. M.; Li, W. C.; Miao, S.; Wang, Q. N.; Zhang, W. P.; Lu, A. H. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem., Int. Ed. 2015, 54, 13994–13998.

[45]

Dai, C. S.; Zhang, Y.; Chen, J. N.; Zhong, X.; Zhang, L. Y.; Zhang, B. S. Support morphology effect on selective hydrogenation of 3-nitrostyrene to 3-vinylaniline over Pt/α-Fe2O3 catalysts. Chem.—Eur. J. 2022, 28, e202200199.

[46]

Zhou, A. J.; Zhang, J. X.; Yang, H.; Shang, S. J.; Zhang, A. F.; Song, C. S.; Guo, X. W. Synergetic and efficient alkylation of benzene with ethane over Pt/ZSM-5 nanosheet bifunctional catalysts to ethylbenzene. Fuel 2023, 342, 127764.

[47]

Freitas, E. F.; Araújo, Á. A. L.; Paiva, M. F.; Dias, S. C. L.; Dias, J. A. Comparative acidity of BEA and Y zeolite composites with 12-tungstophosphoric and 12-tungstosilicic acids. Mol. Catal. 2018, 458, 152–160.

[48]

Fedyna, M.; Śliwa, M.; Jaroszewska, K.; Trawczyński, J. Effect of zeolite amount on the properties of Pt/(AlSBA-15+beta zeolite) micro-mesoporous catalysts for the hydroisomerization of n-heptane. Fuel 2020, 280, 118607.

[49]

Tennakoon, A.; Wu, X.; Meirow, M.; Howell, D.; Willmon, J.; Yu, J. Q.; Lamb, J. V.; Delferro, M.; Luijten, E.; Huang, W. Y. et al. Two mesoporous domains are better than one for catalytic deconstruction of polyolefins. J. Am. Chem. Soc. 2023, 145, 17936–17944.

[50]

Zhou, T. L.; Zhang, D. Z.; Liu, Y.; Sun, Y. W.; Ji, T. T.; Huang, S. J.; Liu, Y. Construction of monodispersed single-crystalline hierarchical ZSM-5 nanosheets via anisotropic etching. J. Energy Chem. 2022, 72, 516–521.

[51]

Wang, X. M.; Wu, X. T.; Zhao, M.; Zhang, R.; Wang, Z. J.; Li, Y. O.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. High-efficiency Ce-modified ZSM-5 nanosheets for waste plastic upgrading. Nano Res. 2024, 17, 5645–5650.

[52]

Schnee, J.; Quezada, M.; Norosoa, O.; Azzolina-Jury, F. ZSM-5 surface modification by plasma for catalytic activity improvement in the gas phase methanol-to-dimethylether reaction. Catal. Today 2019, 337, 195–200.

Nano Research
Pages 10088-10098
Cite this article:
Zhong X, Liu J, Gao L, et al. Constructing the Al deficiency in Si-O(H)-Al units based on Pt/ZSM-5 for enhanced hydrocracking of polyethylene into high-quality liquid fuel. Nano Research, 2024, 17(11): 10088-10098. https://doi.org/10.1007/s12274-024-6894-9
Topics:

357

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 May 2024
Revised: 05 July 2024
Accepted: 17 July 2024
Published: 09 August 2024
© Tsinghua University Press 2024
Return