Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hydrocracking catalysis is a controllable route to plastic waste upgrading. However, the mismatched acid site-driven C–C cleavage and C=C hydrogenation process on metal restrict the efficiency and selectivity in conventional metal/acid bi-functional catalyst. Herein, we introduce Al deficiency in Si-O(H)-Al structural units of Pt/zeolite socony mobil-5 (Pt/ZSM-5) through discharge driven reduction (DR) process to precisely control the ratio of metal to acid, achieving hydrocracking of low-density polyethylene (LDPE) waste at 270 °C with 87.7% conversion and liquid fuel (C5-C21) selectivity of 77.8%. Pair distribution function (PDF) and nuclear magnetic resonance (NMR) spectroscopy demonstrate the partial absent Al sites further resulting short-range local disorder Si-O(H)-Al. Upon pyridine infrared spectroscopy (Py-IR) and CO diffuse reflectance Fourier-transform infrared (CO DRIFT) analysis, the extraction of Al modulates Brønsted acid density of Pt/ZSM-5 with DR process (Pt/Z5DR), improves the interaction between Pt and ZSM-5 support, enhances the cationic of Pt. The metal-acid balance and electron-deficient Pt favor the matching speed of light olefins hydrogenation and the cracking of macromolecule intermediates. Moreover, density functional theory (DFT) calculations identify the thermodynamic stability of Pt/Z5DR and moderate adsorption capability towards light olefins. This work confirms the great potential of precisely controlled molar of metal to acid in metal/zeolite catalysts for LDPE upcycling, providing a viable path for dealing with PE plastic wastes.
Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.
Du, J. J.; Zeng, L.; Yan, T.; Wang, C. H.; Wang, M. L.; Luo, L.; Wu, W. L.; Peng, Z. J.; Li, H. L.; Zeng, J. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nat. Nanotechnol. 2023, 18, 772–779.
Vollmer, I.; Jenks, M. J. F.; Roelands, M. C. P.; White, R. J.; van Harmelen, T.; de Wild, P.; van der Laan, G. P.; Meirer, F.; Keurentjes, J. T. F.; Weckhuysen, B. M. Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem., Int. Ed. 2020, 59, 15402–15423.
Duan, J. D.; Chen, W.; Wang, C. T.; Wang, L.; Liu, Z. Q.; Yi, X. F.; Fang, W.; Wang, H.; Wei, H.; Xu, S. D. et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. J. Am. Chem. Soc. 2022, 144, 14269–14277.
Jie, X. Y.; Li, W. S.; Slocombe, D.; Gao, Y. G.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B. Z.; AlMegren, H.; Alshihri, S.; Dilworth, J. et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 2020, 3, 902–912.
Cao, Q.; Cheng, X. F.; Wang, J.; Zhou, C.; Yang, L. J.; Wang, G.; Chen, D. Y.; He, J. H.; Lu, J. M. Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chin. Chem. Lett. 2024, 35, 108759.
Zhou, X. Y.; Liu, Q. Y.; Xu, G. Q.; Yang, R. L.; Sun, H. G.; Wang, Q. G. Chemical upcycling of poly(lactide) plastic waste to lactate ester, lactide and new poly(lactide) under Mg-catalysis condition. Chin. Chem. Lett. 2023, 34, 108158.
Chen, Z. J.; Zheng, R. J.; Bao, T.; Ma, T. Y.; Wei, W.; Shen, Y. S.; Ni, B. J. Dual-doped nickel sulfide for electro-upgrading polyethylene terephthalate into valuable chemicals and hydrogen fuel. Nano-Micro Lett. 2023, 15, 210.
Li, L.; Luo, H.; Shao, Z. L.; Zhou, H. Z.; Lu, J. W.; Chen, J. J.; Huang, C. J.; Zhang, S. N.; Liu, X. F.; Xia, L. et al. Converting plastic wastes to naphtha for closing the plastic loop. J. Am. Chem. Soc. 2023, 145, 1847–1854.
Wang, W. J.; Yao, C.; Ge, X. H.; Pu, X.; Yuan, J. C.; Sun, W. X.; Chen, W. Y.; Feng, X.; Qian, G.; Duan, X. Z. et al. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: Insights into reaction pathways and rate-controlling step regulation. J. Mater. Chem. A 2023, 11, 14933–14940.
Wu, X.; Tennakoon, A.; Yappert, R.; Esveld, M.; Ferrandon, M. S.; Hackler, R. A.; LaPointe, A. M.; Heyden, A.; Delferro, M.; Peters, B. et al. Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. J. Am. Chem. Soc. 2022, 144, 5323–5334.
Zhou, Q. M.; Wang, D. L.; Wang, Q. Y.; He, K. L.; Lim, K. H.; Yang, X.; Wang, W. J.; Li, B. G.; Liu, P. W. Mechanistic understanding of efficient polyethylene hydrocracking over two-dimensional platinum-anchored tungsten trioxide. Angew. Chem., Int. Ed. 2023, 62, e202305644.
Pyra, K.; Tarach, K. A.; Śrębowata, A.; Melián-Cabrera, I.; Góra-Marek, K. Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel. Appl. Catal. B: Environ. 2020, 277, 119070.
Lopez, G.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 2017, 73, 346–368.
Chen, Z. Z.; Xu, L. L.; Zhang, X. R. Upgrading of polyethylene to hydrocarbon fuels over the Fe-modified Pt/Al2O3 catalysts at a mild condition without external H2. Chem. Eng. J. 2022, 446, 136213.
Nakaji, Y.; Tamura, M.; Miyaoka, S.; Kumagai, S.; Tanji, M.; Nakagawa, Y.; Yoshioka, T.; Tomishige, K. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes. Appl. Catal. B: Environ. 2021, 285, 119805.
Kang, Q. Y.; Chu, M. Y.; Xu, P. P.; Wang, X. C.; Wang, S. Q.; Cao, M. H.; Ivasenko, O.; Sham, T. K.; Zhang, Q.; Sun, Q. M. et al. Entropy confinement promotes hydrogenolysis activity for polyethylene upcycling. Angew. Chem., Int. Ed. 2023, 62, e202313174.
Dong, Z. W.; Chen, W. J.; Xu, K. Q.; Liu, Y.; Wu, J.; Zhang, F. Understanding the structure–activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: A critical review. ACS Catal. 2022, 12, 14882–14901.
Zhao, M.; Wang, X.; Xu, J.; Li, Y. O.; Wang, X. M.; Chu, X.; Wang, K.; Wang, Z. J.; Zhang, L. L.; Feng, J. et al. Strengthening the metal-acid interactions by using CeO2 as regulators of precisely placing Pt species in ZSM-5 for furfural hydrogenation. Adv. Mater. 2024, 36, 2313596.
Wu, X. T.; Wang, X.; Zhang, L. L.; Wang, X. M.; Song, S. Y.; Zhang, H. J. Polyethylene upgrading to liquid fuels boosted by atomic Ce promoters. Angew. Chem., Int. Ed. 2024, 63, e202317594.
Choi, I. H.; Lee, H. J.; Rhim, G. B.; Chun, D. H.; Lee, K. H.; Hwang, K. R. Catalytic hydrocracking of heavy wax from pyrolysis of plastic wastes using Pd/Hβ for naphtha-ranged hydrocarbon production. J. Anal. Appl. Pyrolysis 2022, 161, 105424.
Vance, B. C.; Kots, P. A.; Wang, C.; Hinton, Z. R.; Quinn, C. M.; Epps, T. H.; Korley, L. T. J.; Vlachos, D. G. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl. Catal. B: Environ. 2021, 299, 120483.
Kumar, V.; Kawazoe, Y. Evolution of atomic and electronic structure of Pt clusters: Planar, layered, pyramidal, cage, cubic, and octahedral growth. Phys. Rev. B 2008, 77, 205418.
Chen, G. R.; Li, J. Y.; Wang, S.; Han, J.; Wang, X. X.; She, P. H.; Fan, W. B.; Guan, B. Y.; Tian, P.; Yu, J. H. Construction of single-crystalline hierarchical ZSM-5 with open nanoarchitectures via anisotropic-kinetics transformation for the methanol-to-hydrocarbons reaction. Angew. Chem. 2022, 134, e202200677.
Wu, L.; Xin, J. J.; Wang, Y. G.; Zhang, K. X.; Zhang, J. R.; Sun, J. L.; Zou, R. Q.; Liang, J. Hollow ZSM-5 encapsulated with single Ga-atoms for the catalytic fast pyrolysis of biomass waste. J. Energy Chem. 2023, 84, 363–373.
Wang, Z.; Wang, C. P.; Mao, S. J.; Lu, B.; Chen, Y. Z.; Zhang, X.; Chen, Z. R.; Wang, Y. Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nat. Commun. 2022, 13, 3561.
Wang, N.; Li, J.; Sun, W. J.; Hou, Y. L.; Zhang, L.; Hu, X. M.; Yang, Y. F.; Chen, X.; Chen, C. M.; Chen, B. H. et al. Rational design of zinc/zeolite catalyst: Selective formation of p-xylene from methanol to aromatics reaction. Angew. Chem., Int. Ed. 2022, 61, e202114786.
Jiao, Y. L.; Forster, L.; Xu, S. J.; Chen, H. H.; Han, J. F.; Liu, X. Q.; Zhou, Y. T.; Liu, J. M.; Zhang, J. S.; Yu, J. H. et al. Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity: Converting tetrahedral extra-framework Al into framework sites by post treatment. Angew. Chem., Int. Ed. 2020, 59, 19478–19486.
Nie, Y. Y.; Shang, S. N.; Xu, X.; Hua, W. M.; Yue, Y. H.; Gao, Z. In2O3-doped Pt/WO3/ZrO2 as a novel efficient catalyst for hydroisomerization of n-heptane. Appl. Catal. A: Gen. 2012, 433–434, 69–74.
Su, J. F.; Shi, W.; Liu, X. C.; Zhang, L. Y.; Cheng, S. B.; Zhang, Y.; Botton, G. A.; Zhang, B. S. Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. J. Catal. 2020, 388, 164–170.
Zhang, L. Y.; Zeng, T. T.; Zheng, L. W.; Wang, Y. R.; Yuan, W. Y.; Niu, M.; Guo, C. X.; Cao, D. P.; Li, C. M. Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction. Adv. Powder Mater. 2023, 2, 100131.
Gao, M. Q.; Zhou, W. Y.; Mo, Y. X.; Sheng, T.; Deng, Y. H.; Chen, L. Z.; Wang, K.; Tan, Y. L.; Zhou, H. Q. Outstanding long-cycling lithium-sulfur batteries by core–shell structure of S@Pt composite with ultrahigh sulfur content. Adv. Powder Mater. 2022, 1, 100006.
Liu, C.; Zhang, P. F.; Liu, B.; Meng, Q.; Yang, X. Z.; Li, Y. K.; Han, J. L.; Wang, Y. Long-range Pt-Ni dual sites boost hydrogen evolution through optimizing the adsorption configuration. Nano Res. 2024, 17, 3700–3706.
Zhou, J.; Zhang, Y.; Liu, H.; Xiong, C.; Hu, P.; Wang, H.; Chen, S. W.; Ji, H. B. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite. Nano Res. 2023, 16, 6537–6543.
Tian, J.; Tan, K. B.; Liao, Y. C.; Sun, D. H.; Li, Q. B. Hollow ZSM-5 zeolite encapsulating Pt nanoparticles: Cage-confinement effects for the enhanced catalytic oxidation of benzene. Chemosphere 2022, 292, 133446.
Alonso-Doncel, M.; Peral, A.; Ochoa-Hernández, C.; Sanz, R.; Serrano, D. P. Tracking the evolution of embryonic zeolites into hierarchical ZSM-5. J. Mater. Chem. A 2021, 9, 13570–13587.
Minami, A.; Hu, P. D.; Sada, Y.; Yamada, H.; Ohara, K.; Yonezawa, Y.; Sasaki, Y.; Yanaba, Y.; Takemoto, M.; Yoshida, Y. et al. Tracking sub-nano-scale structural evolution in zeolite synthesis by in situ high-energy X-ray total scattering measurement with pair distribution function analysis. J. Am. Chem. Soc. 2022, 144, 23313–23320.
Louwen, J. N.; van Eijck, L.; Vogt, C.; Vogt, E. T. C. Understanding the activation of ZSM-5 by phosphorus: Localizing phosphate groups in the pores of phosphate-stabilized ZSM-5. Chem. Mater. 2020, 32, 9390–9403.
Ikuno, T.; Chaikittisilp, W.; Liu, Z. D.; Iida, T.; Yanaba, Y.; Yoshikawa, T.; Kohara, S.; Wakihara, T.; Okubo, T. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process. J. Am. Chem. Soc. 2015, 137, 14533–14544.
Ma, Y.; Tang, X. M.; Hu, J. Y.; Ma, Y. H.; Chen, W.; Liu, Z. Q.; Han, S. C.; Xu, C.; Wu, Q. M.; Zheng, A. M. et al. Design of a small organic template for the synthesis of self-pillared pentasil zeolite nanosheets. J. Am. Chem. Soc. 2022, 144, 6270–6277.
Silaghi, M. C.; Chizallet, C.; Sauer, J.; Raybaud, P. Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J. Catal. 2016, 339, 242–255.
Chen, L. X.; Meyer, L. C.; Kovarik, L.; Meira, D.; Pereira-Hernandez, X. I.; Shi, H. H.; Khivantsev, K.; Gutiérrez, O. Y.; Szanyi, J. Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal. 2022, 12, 4618–4627.
Zhang, S. C.; Li, Y. F.; Ding, C. M.; Niu, Y. X.; Zhang, Y. F.; Yang, B.; Li, G. S.; Wang, J. W.; Ma, Z. L.; Yu, L. J. Atomic dispersion of Pt clusters encapsulated within ZSM-5 depending on aluminum sites and calcination temperature. Small Structures 2023, 4, 2200115.
Shi, L.; Deng, G. M.; Li, W. C.; Miao, S.; Wang, Q. N.; Zhang, W. P.; Lu, A. H. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem., Int. Ed. 2015, 54, 13994–13998.
Dai, C. S.; Zhang, Y.; Chen, J. N.; Zhong, X.; Zhang, L. Y.; Zhang, B. S. Support morphology effect on selective hydrogenation of 3-nitrostyrene to 3-vinylaniline over Pt/α-Fe2O3 catalysts. Chem.—Eur. J. 2022, 28, e202200199.
Zhou, A. J.; Zhang, J. X.; Yang, H.; Shang, S. J.; Zhang, A. F.; Song, C. S.; Guo, X. W. Synergetic and efficient alkylation of benzene with ethane over Pt/ZSM-5 nanosheet bifunctional catalysts to ethylbenzene. Fuel 2023, 342, 127764.
Freitas, E. F.; Araújo, Á. A. L.; Paiva, M. F.; Dias, S. C. L.; Dias, J. A. Comparative acidity of BEA and Y zeolite composites with 12-tungstophosphoric and 12-tungstosilicic acids. Mol. Catal. 2018, 458, 152–160.
Fedyna, M.; Śliwa, M.; Jaroszewska, K.; Trawczyński, J. Effect of zeolite amount on the properties of Pt/(AlSBA-15+beta zeolite) micro-mesoporous catalysts for the hydroisomerization of n-heptane. Fuel 2020, 280, 118607.
Tennakoon, A.; Wu, X.; Meirow, M.; Howell, D.; Willmon, J.; Yu, J. Q.; Lamb, J. V.; Delferro, M.; Luijten, E.; Huang, W. Y. et al. Two mesoporous domains are better than one for catalytic deconstruction of polyolefins. J. Am. Chem. Soc. 2023, 145, 17936–17944.
Zhou, T. L.; Zhang, D. Z.; Liu, Y.; Sun, Y. W.; Ji, T. T.; Huang, S. J.; Liu, Y. Construction of monodispersed single-crystalline hierarchical ZSM-5 nanosheets via anisotropic etching. J. Energy Chem. 2022, 72, 516–521.
Wang, X. M.; Wu, X. T.; Zhao, M.; Zhang, R.; Wang, Z. J.; Li, Y. O.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. High-efficiency Ce-modified ZSM-5 nanosheets for waste plastic upgrading. Nano Res. 2024, 17, 5645–5650.
Schnee, J.; Quezada, M.; Norosoa, O.; Azzolina-Jury, F. ZSM-5 surface modification by plasma for catalytic activity improvement in the gas phase methanol-to-dimethylether reaction. Catal. Today 2019, 337, 195–200.