AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Online First

Research progress of quantum dot photolithography patterning and direct photolithography application

Zhong ChenYu LiZhongwei Man( )Aiwei Tang( )
Key Laboratory of Luminescence and Optical Information Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
Show Author Information

Graphical Abstract

Abstract

For the new display technology based on quantum dots (QDs), realizing high-precision arrays of red, green, and blue (RGB) pixels has been a significant research focus at present, aimed at achieving high-quality and high-resolution image displays. However, challenges such as material stability and the variability of process environments complicate the assurance of quality in high-precision patterns. The novel optical patterning technology, exemplified by direct photolithography, is considered a highly promising approach for achieving submicron-level, hyperfine patterning. On the technological level, this method produces patterned quantum dot light-emitting films through a photochemical reaction. Here, we provide a comprehensive review of various methods of QD photolithography patterning, including traditional photolithography, lift off, and direct photolithography, which mainly focused on direct photolithography. This review covers the classification of direct photolithography technologies, summarizes the latest research progress, and discusses future perspectives on the advancement of photolithography technology de-masking.

References

[1]

Sun, J. Y.; Rabouw, F. T.; Yang, X. F.; Huang, X. Y.; Jing, X. P.; Ye, S.; Zhang, Q. Y. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application. Adv. Funct. Mater. 2017, 27, 1704371.

[2]

Lai, C. F.; Tien, Y. C.; Tong, H. C.; Zhong, C. Z.; Lee, Y. C. High-performance quantum dot light-emitting diodes using chip-scale package structures with high reliability and wide color gamut for backlight displays. RSC Adv. 2018, 8, 35966–35972.

[3]

Ma, T.; Chen, J.; Chen, Z. Y.; Liang, L. M.; Hu, J. N.; Shen, W. L.; Li, Z. H.; Zeng, H. B. Progress in color conversion technology for micro-LED. Adv. Mater. Technol. 2023, 8, 2200632.

[4]

Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 2010, 22, 3076–3080.

[5]

Lin, J. Y.; Jiang, H. X. Development of microLED. Appl. Phys. Lett. 2020, 116, 100502.

[6]

Wu, Y. F.; Ma, J. S.; Su, P.; Zhang, L. J.; Xia, B. Z. Full-color realization of micro-led displays. Nanomaterials 2020, 10, 2482.

[7]

Wu, T. Z.; Sher, C. W.; Lin, Y.; Lee, C. F.; Liang, S. J.; Lu, Y. J.; Chen, S. W. H.; Guo, W. J.; Kuo, H. C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557.

[8]

Jiang, H. X.; Lin, J. Y. Nitride micro-LEDs and beyond-a decade progress review. Opt. Express 2013, 21, A475–A484.

[9]

Huang, Y. G.; Tan, G. J.; Gou, F. W.; Li, M. C.; Lee, S. L.; Wu, S. T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 387–401.

[10]

Kim, Y.; Ham, S.; Jang, H.; Min, J. H.; Chung, H.; Lee, J.; Kim, D.; Jang, E. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2019, 2, 1496–1504.

[11]

Jeong, B. G.; Park, Y. S.; Chang, J. H.; Cho, I.; Kim, J. K.; Kim, H.; Char, K.; Cho, J.; Klimov, V. I.; Park, P. et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 2016, 10, 9297–9305.

[12]

Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560.

[13]

Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53, 16338–16346.

[14]

Wei, Y.; Ma, T.; Chen, J.; Zhao, M. Y.; Zeng, H. B. Metal halide perovskites for optical parametric modulation. J. Phys. Chem. Lett. 2021, 12, 3090–3098.

[15]

Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.

[16]

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

[17]

Dey, A.; Ye, J. Z.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z.; Yin, J.; Wang, Y. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 2021, 15, 10775–10981.

[18]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[19]

Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

[20]

Akkerman, Q. A.; Manna, L. What defines a halide perovskite. ACS Energy Lett. 2020, 5, 604–610.

[21]

Park, S. Y.; Lee, S.; Yang, J.; Kang, M. S. Patterning quantum dots via photolithography: A review. Adv. Mater. 2023, 35, 2300546.

[22]

Hyun, B. R.; Sher, C. W.; Chang, Y. W.; Lin, Y. H.; Liu, Z. J.; Kuo, H. C. Dual role of quantum dots as color conversion layer and suppression of input light for full-color micro-led displays. J. Phys. Chem. Lett. 2021, 12, 6946–6954.

[23]

Bao, Z.; Luo, J. W.; Wang, Y. S.; Hu, T. C.; Tsai, S. Y.; Tsai, Y. T.; Wang, H. C.; Chen, F. H.; Lee, Y. C.; Tsai, T. L. et al. microfluidic synthesis of CsPbBr3/Cs4PbBr6 nanocrystals for inkjet printing of mini-LEDs. Chem. Eng. J. 2021, 426, 130849.

[24]

Surrente, A.; Baranowski, M.; Plochocka, P. Perspective on the physics of two-dimensional perovskites in high magnetic field. Appl. Phys. Lett. 2021, 118, 170501.

[25]

Sun, Q. J.; Wang, Y. A.; Li, L. S.; Wang, D. Y.; Zhu, T.; Xu, J.; Yang, C. H.; Li, Y. F. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722.

[26]

Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250.

[27]

Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

[28]

Chen, J. W.; Wang, J.; Xu, X. B.; Li, J. H.; Song, J. Z.; Lan, S.; Liu, S. N.; Cai, B.; Han, B. N.; Precht, J. T. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 2021, 15, 238–244.

[29]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[30]

Coe, S.; Woo, W. K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

[31]

Xiang, C. Y.; Wu, L. J.; Lu, Z. Z.; Li, M. L.; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

[32]

Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412.

[33]

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

[34]

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

[35]

Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A.; Klimov, V. I. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 2005, 5, 1039–1044.

[36]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[37]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[38]

Choi, M. K.; Yang, J.; Kim, D. C.; Dai, Z. H.; Kim, J.; Seung, H.; Kale, V. S.; Sung, S. J.; Park, C. R.; Lu, N. S. et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 2018, 30, 1703279.

[39]

Keum, H.; Jiang, Y. R.; Park, J. K.; Flanagan, J. C.; Shim, M.; Kim, S. Photoresist contact patterning of quantum dot films. ACS Nano 2018, 12, 10024–10031.

[40]

Nam, T. W.; Kim, M.; Wang, Y. M.; Kim, G. Y.; Choi, W.; Lim, H.; Song, K. M.; Choi, M. J.; Jeon, D. Y.; Grossman, J. C. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat. Commun. 2020, 11, 3040.

[41]

Meng, T. T.; Zheng, Y. T.; Zhao, D. L.; Hu, H. L.; Zhu, Y. B.; Xu, Z. W.; Ju, S. M.; Jing, J. P.; Chen, X.; Gao, H. J. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photonics 2022, 16, 297–303.

[42]

Kim, S. Y.; Kwon, J. I.; Song, H. H.; Lee, G. H.; Yu, W. S.; Li, S.; Choi, M. K.; Yang, J. Effects of the surface ligands of quantum dots on the intaglio transfer printing process. Appl. Surf. Sci. 2023, 610, 155579.

[43]

Lee, S. Y.; Lee, G.; Kim, D. Y.; Jang, S. H.; Choi, I.; Park, J.; Park, H. K.; Jung, J. W.; Cho, K. H.; Choi, J. Investigation of high-performance perovskite nanocrystals for inkjet-printed color conversion layers with superior color purity. APL Photonics 2021, 6, 056104.

[44]

Roh, H.; Ko, D.; Shin, D. Y.; Chang, J. H.; Hahm, D.; Bae, W. K.; Lee, C.; Kim, J. Y.; Kwak, J. Enhanced performance of pixelated quantum dot light-emitting diodes by inkjet printing of quantum dot-polymer composites. Adv. Opt. Mater. 2021, 9, 2002129.

[45]

Wei, C. T.; Su, W.; Li, J.; Xu, B.; Shan, Q.; Wu, Y.; Zhang, F.; Luo, M.; Xiang, H.; Cui, Z. et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2107798.

[46]

Zhang, G. N.; Zhang, H. Y.; Yu, R.; Duan, Y. Q.; Huang, Y. A.; Yin, Z. P. Critical size/viscosity for coffee-ring-free printing of perovskite micro/nanopatterns. ACS Appl. Mater. Interfaces 2022, 14, 14712–14720.

[47]

Torun, I.; Huang, C.; Kalay, M.; Shim, M.; Onses, M. S. pH tunable patterning of quantum dots. Small 2024, 20, 2305237.

[48]

Yang, X.; Yan, Z. J.; Zhong, C. M.; Jia, H.; Chen, G. L.; Fan, X. T.; Wang, S. L.; Wu, T. Z.; Lin, Y.; Chen, Z. Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks. Adv. Opt. Mater. 2023, 11, 2202673.

[49]

Yang, X. Y.; Wu, J.; Liu, T. H.; Zhu, R. Patterned perovskites for optoelectronic applications. Small Methods 2018, 2, 1800110.

[50]

Huang, X. J.; Xiao, X. D.; Dong, G. P. Metal halide perovskites functionalized by patterning technologies. Adv. Mater. Technol. 2020, 5, 2000513.

[51]

Han, J. W.; Hwang, S. H.; Seol, M. J.; Kim, S. Y. Recent patterning methods for halide perovskite nanoparticles. Adv. Opt. Mater. 2022, 10, 2200534.

[52]

Mulko, L.; Soldera, M.; Lasagni, A. F. Structuring and functionalization of non-metallic materials using direct laser interference patterning: A review. Nanophotonics 2022, 11, 203–240.

[53]

Park, A.; Goudarzi, A.; Yaghmaie, P.; Thomas, V. J.; Maine, E. Rapid response through the entrepreneurial capabilities of academic scientists. Nat. Nanotechnol. 2022, 17, 802–807.

[54]

Nam, T. W.; Choi, M. J.; Jung, Y. S. Ultrahigh-resolution quantum dot patterning for advanced optoelectronic devices. Chem. Commun. 2023, 59, 2697–2710.

[55]

Bae, J. H.; Kim, S.; Ahn, J.; Shin, C.; Jung, B. K.; Lee, Y. M.; Hong, Y. K.; Kim, W.; Ha, D. H.; Ng, T. N. et al. Acid-base reaction-assisted quantum dot patterning via ligand engineering and photolithography. ACS Appl. Mater. Interfaces 2022, 14, 47831–47840.

[56]

Kim, G. H.; Noh, K.; Han, J. S.; Kim, M.; Oh, N.; Lee, W.; Na, H. B.; Shin, C.; Yoon, T. S.; Lim, J. et al. Enhanced brightness and device lifetime of quantum dot light-emitting diodes by atomic layer deposition. Adv. Mater. Interfaces 2020, 7, 2000343.

[57]

Kim, G. H.; Lee, J.; Lee, J. Y.; Han, J. S.; Choi, Y.; Kang, C. J.; Kim, K. B.; Lee, W.; Lim, J.; Cho, S. Y. High-resolution colloidal quantum dot film photolithography via atomic layer deposition of ZnO. ACS Appl. Mater. Interfaces 2021, 13, 43075–43084.

[58]

Hu, C.; Aubert, T.; Justo, Y.; Flamee, S.; Cirillo, M.; Gassenq, A.; Drobchak, O.; Beunis, F.; Roelkens, G.; Hens, Z. The micropatterning of layers of colloidal quantum dots with inorganic ligands using selective wet etching. Nanotechnology 2014, 25, 175302.

[59]

Lee, J. Y.; Kim, E. A.; Han, J. S.; Choi, Y. H.; Hahm, D.; Kang, C. J.; Bae, W. K.; Lim, J.; Cho, S. Y. Nondestructive direct photolithography for patterning quantum dot films by atomic layer deposition of ZnO. Adv. Mater. Interfaces 2022, 9, 2200835.

[60]

Shulga, A. G.; Yamamura, A.; Tsuzuku, K.; Dragoman, R. M.; Dirin, D. N.; Watanabe, S.; Kovalenko, M. V.; Takeya, J.; Loi, M. A. Patterned quantum dot photosensitive FETs for medium frequency optoelectronics. Adv. Mater. Technol. 2019, 4, 1900054.

[61]

Harwell, J.; Burch, J.; Fikouras, A.; Gather, M. C.; Di Falco, A.; Samuel, I. D. W. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 2019, 13, 3823–3829.

[62]

Myeong, S.; Chon, B.; Kumar, S.; Son, H. J.; Kang, S. O.; Seo, S. Quantum dot photolithography using a quantum dot photoresist composed of an organic-inorganic hybrid coating layer. Nanoscale Adv. 2022, 4, 1080–1087.

[63]

Tang, X.; Tang, X. B.; Lai, K. W. C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films. ACS Photonics 2016, 3, 2396–2404.

[64]

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

[65]

Jeon, S.; Lee, S. Y.; Kim, S. K.; Kim, W.; Park, T.; Bang, J.; Ahn, J.; Woo, H. K.; Chae, J. Y.; Paik, T. et al. All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 2020, 8, 2000501.

[66]

Park, J. S.; Kyhm, J.; Kim, H. H.; Jeong, S.; Kang, J.; Lee, S. E.; Lee, K. T.; Park, K.; Barange, N.; Han, J. et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett. 2016, 16, 6946–6953.

[67]

Ji, T. J.; Jin, S.; Zhang, H.; Chen, S. M.; Sun, X. W. Full color quantum dot light-emitting diodes patterned by photolithography technology. J. Soc. Inf. Disp. 2018, 26, 121–127.

[68]

Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.

[69]

Lin, C. H.; Zeng, Q. J.; Lafalce, E.; Yu, S. T.; Smith, M. J.; Yoon, Y. J.; Chang, Y. J.; Jiang, Y.; Lin, Z. Q.; Vardeny, Z. V. et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 2018, 6, 1800474.

[70]

Mentzel, T. S.; Wanger, D. D.; Ray, N.; Walker, B. J.; Strasfeld, D.; Bawendi, M. G.; Kastner, M. A. Nanopatterned electrically conductive films of semiconductor nanocrystals. Nano Lett. 2012, 12, 4404–4408.

[71]

Zou, C.; Chang, C.; Sun, D.; Böhringer, K. F.; Lin, L. Y. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 2020, 20, 3710–3717.

[72]

Bae, J.; Shin, Y.; Yoo, H.; Choi, Y.; Lim, J.; Jeon, D.; Kim, I.; Han, M.; Lee, S. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nat. Commun. 2022, 13, 1862.

[73]

Xing, D.; Lin, C. C.; Ho, Y. L.; Kamal, A. S. A.; Wang, I. T.; Chen, C. C.; Wen, C. Y.; Chen, C. W.; Delaunay, J. J. Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array. Adv. Funct. Mater. 2021, 31, 2006283.

[74]

Guo, W. S.; Chen, J.; Ma, T.; Chen, Z. Y.; Li, M. L.; Zeng, H. B.; Lu, J. Direct photolithography patterning of quantum dot-polymer. Adv. Funct. Mater. 2024, 34, 2310338.

[75]

Zhang, X.; Qi, L. H.; Chong, W. C.; Li, P. A.; Tang, C. W.; Lau, K. M. Active matrix monolithic micro-LED full-color micro-display. J. Soc. Inf. Disp. 2021, 29, 47–56.

[76]

Lee, S. Designing of low-cost, eco-friendly, and versatile photosensitive composites/inks based on carboxyl-terminated quantum dots and reactive prepolymers in a mixed solvent: Suppression of the coffee-ring strain and aggregation. Polymer 2019, 182, 121839.

[77]

Ingrosso, C.; Fakhfouri, V.; Striccoli, M.; Agostiano, A.; Voigt, A.; Gruetzner, G.; Curri, M. L.; Brugger, J. An epoxy photoresist modified by luminescent nanocrystals for the fabrication of 3D high-aspect-ratio microstructures. Adv. Funct. Mater. 2007, 17, 2009–2017.

[78]

Jang, J.; Kim, Y. H.; Park, S.; Yoo, D.; Cho, H.; Jang, J.; Jeong, H. B.; Lee, H.; Yuk, J. M.; Park, C. B. et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years. Adv. Mater. 2021, 33, 2005255.

[79]

Srivastava, S.; Lee, K. E.; Fitzgerald, E. A.; Pennycook, S. J.; Gradečak, S. Freestanding high-resolution quantum dot color converters with small pixel sizes. ACS Appl. Mater. Interfaces 2022, 14, 48995–49002.

[80]

Chen, S. W. H.; Huang, Y. M.; Singh, K. J.; Hsu, Y. C.; Liou, F. J.; Song, J.; Choi, J.; Lee, P. T.; Lin, C. C.; Chen, Z. et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res. 2020, 8, 630–636.

[81]

Sung, C. H.; Huang, S. D.; Kumar, G.; Lin, W. C.; Lin, C. C.; Kuo, H. C.; Chen, F. C. Highly luminescent perovskite quantum dots for light-emitting devices: Photopatternable perovskite quantum dot-polymer nanocomposites. J. Mater. Chem. C 2022, 10, 15941–15947.

[82]

Li, P. A.; Zhang, X.; Li, Y. F.; Qi, L. H.; Tang, C. W.; Lau, K. M. Monolithic full-color microdisplay using patterned quantum dot photoresist on dual-wavelength LED epilayers. J. Soc. Inf. Disp. 2021, 29, 157–165.

[83]

Kim, H. J.; Shin, M. H.; Lee, J. Y.; Kim, J. H.; Kim, Y. J. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film. Opt. Express 2017, 25, 10724–10734.

[84]

Nakanishi, Y.; Takeshita, T.; Qu, Y.; Imabayashi, H.; Okamoto, S.; Utsumi, H.; Kanehiro, M.; Angioni, E.; Boardman, E. A.; Hamilton, I. et al. Active matrix QD-LED with top emission structure by UV lithography for RGB patterning. J. Soc. Inf. Disp. 2020, 28, 499–508.

[85]

Zhang, P. P.; Yang, G. L.; Li, F.; Shi, J. B.; Zhong, H. Z. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat. Commun. 2022, 13, 6713.

[86]

Lee, S.; Lee, C. High-density quantum dots composites and its photolithographic patterning applications. Polym. Adv. Technol. 2019, 30, 749–754.

[87]

Liu, X.; Li, J. J.; Zhang, P. P.; Lu, W. T.; Yang, G. L.; Zhong, H. Z.; Zhao, Y. J. Perovskite quantum dot microarrays: In situ fabrication via direct print photopolymerization. Nano Res. 2022, 15, 7681–7687.

[88]

Kim, Y. H.; Koh, S.; Lee, H.; Kang, S. M.; Lee, D. C.; Bae, B. S. Photo-patternable quantum dots/siloxane composite with long-term stability for quantum dot color filters. ACS Appl. Mater. Interfaces 2020, 12, 3961–3968.

[89]

Li, X. H.; Kundaliya, D.; Tan, Z. J.; Anc, M.; Fang, N. X. Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion. Opt. Express 2019, 27, 30864–30874.

[90]

Hahm, D.; Park, J.; Jeong, I.; Rhee, S.; Lee, T.; Lee, C.; Chung, S.; Bae, W. K.; Lee, S. Surface engineered colloidal quantum dots for complete green process. ACS Appl. Mater. Interfaces 2020, 12, 10563–10570.

[91]

Nandwana, V.; Subramani, C.; Yeh, Y. C.; Yang, B. Q.; Dickert, S.; Barnes, M. D.; Tuominen, M. T.; Rotello, V. M. Direct patterning of quantum dot nanostructures via electron beam lithography. J. Mater. Chem. 2011, 21, 16859–16862.

[92]

Ko, T.; Kumar, S.; Shin, S.; Seo, D.; Seo, S. Colloidal quantum dot nanolithography: Direct patterning via electron beam lithography. Nanomaterials 2023, 13, 2111.

[93]

Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 2016, 10, 1224–1230.

[94]

Miszta, K.; Greullet, F.; Marras, S.; Prato, M.; Toma, A.; Arciniegas, M.; Manna, L.; Krahne, R. Nanocrystal film patterning by inhibiting cation exchange via electron-beam or X-ray lithography. Nano Lett. 2014, 14, 2116–2122.

[95]

Palazon, F.; Prato, M.; Manna, L. Writing on nanocrystals: Patterning colloidal inorganic nanocrystal films through irradiation-induced chemical transformations of surface ligands. J. Am. Chem. Soc. 2017, 139, 13250–13259.

[96]

Wu, Y. T.; Liao, J. D.; Weng, C. C.; Hesieh, Y. T.; Chen, C. H.; Wang, M. C.; Zharnikov, M. Alkanethiolate self-assembled monolayers as a negative or positive resist for electron lithography. J. Phys. Chem. C 2009, 113, 4543–4548.

[97]

Seshadri, K.; Froyd, K.; Parikh, A. N.; Allara, D. L.; Lercel, M. J.; Craighead, H. G. Electron-beam-induced damage in self-assembled monolayers. J. Phys. Chem. 1996, 100, 15900–15909.

[98]

Gadegaard, N.; Chen, X. Y.; Rutten, F. J. M.; Alexander, M. R. High-energy electron beam lithography of octadecylphosphonic acid monolayers on aluminum. Langmuir 2008, 24, 2057–2063.

[99]

Zharnikov, M.; Grunze, M. Modification of thiol-derived self-assembling monolayers by electron and X-ray irradiation: Scientific and lithographic aspects. J. Vac. Sci. Technol. B 2002, 20, 1793–1807.

[100]

Wang, L.; Zhu, Y. Y.; Liu, H.; Gong, J. H.; Wang, W.; Guo, S. Y.; Yu, Y.; Peng, H. Y.; Liao, Y. G. Giant stability enhancement of CsPbX3 nanocrystal films by plasma-induced ligand polymerization. ACS Appl. Mater. Interfaces 2019, 11, 35270–35276.

[101]

Jun, S.; Jang, E.; Park, J.; Kim, J. Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices. Langmuir 2006, 22, 2407–2410.

[102]

Dieleman, C. D.; Ding, W. Y.; Wu, L. J.; Thakur, N.; Bespalov, I.; Daiber, B.; Ekinci, Y.; Castellanos, S.; Ehrler, B. Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography. Nanoscale 2020, 12, 11306–11316.

[103]

Lee, J.; Ha, J.; Lee, H.; Cho, H.; Lee, D. C.; Talapin, D. V.; Cho, H. Direct optical lithography of colloidal InP-based quantum dots with ligand pair treatment. ACS Energy Lett. 2023, 8, 4210–4217.

[104]

Pan, J. A.; Ondry, J. C.; Talapin, D. V. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett. 2021, 21, 7609–7616.

[105]

Wang, Y.; Shan, X. Y.; Tang, Y. J.; Liu, T. Y.; Li, B. H.; Jin, P.; Liang, K.; Li, D. W.; Yang, Y. M.; Shen, H. B. et al. Direct optical patterning of nanocrystal-based thin-film transistors and light-emitting diodes through native ligand cleavage. ACS Appl. Nano Mater. 2022, 5, 8457–8466.

[106]

Cho, H.; Pan, J. A.; Wu, H. Q.; Lan, X. Z.; Coropceanu, I.; Wang, Y. Y.; Cho, W.; Hill, E. A.; Anderson, J. S.; Talapin, D. V. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange. Adv. Mater. 2020, 32, 2003805.

[107]

Hahm, D.; Lim, J.; Kim, H.; Shin, J. W.; Hwang, S.; Rhee, S.; Chang, J. H.; Yang, J.; Lim, C. H.; Jo, H. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 2022, 17, 952–958.

[108]

Ko, J.; Chang, J. H.; Jeong, B. G.; Kim, H. J.; Joung, J. F.; Park, S.; Choi, D. H.; Bae, W. K.; Bang, J. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS Appl. Mater. Interfaces 2020, 12, 42153–42160.

[109]

Fu, Z.; Zhou, L. K.; Yin, Y.; Weng, K. K.; Li, F.; Lu, S. Y.; Liu, D.; Liu, W. Y.; Wu, L. J.; Yang, Y. X. et al. Direct photo-patterning of efficient and stable quantum dot light-emitting diodes via light-triggered, carbocation-enabled ligand stripping. Nano Lett. 2023, 23, 2000–2008.

[110]

Wang, Y. Y.; Pan, J. A.; Wu, H. Q.; Talapin, D. V. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 2019, 13, 13917–13931.

[111]

Jin, X. Y.; Ma, K. L.; Chakkamalayath, J.; Morsby, J.; Gao, H. F. In situ photocatalyzed polymerization to stabilize perovskite nanocrystals in protic solvents. ACS Energy Lett 2022, 7, 610–616.

[112]

Ko, J.; Ma, K.; Joung, J. F.; Park, S.; Bang, J. Ligand-assisted direct photolithography of perovskite nanocrystals encapsulated with multifunctional polymer ligands for stable, full-colored, high-resolution displays. Nano Lett. 2021, 21, 2288–2295.

[113]

Dement, D. B.; Quan, M. K.; Ferry, V. E. Nanoscale patterning of colloidal nanocrystal films for nanophotonic applications using direct write electron beam lithography. ACS Appl. Mater. Interfaces 2019, 11, 14970–14979.

[114]

Kim, W. J.; Kim, S. J.; Lee, K. S.; Samoc, M.; Cartwright, A. N.; Prasad, P. N. Robust microstructures using UV photopatternable semiconductor nanocrystals. Nano Lett. 2008, 8, 3262–3265.

[115]

Wang, Y. Y.; Fedin, I.; Zhang, H.; Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 2017, 357, 385–388.

[116]

Lu, S. Y.; Fu, Z.; Li, F.; Weng, K. K.; Zhou, L. K.; Zhang, L. P.; Yang, Y. C.; Qiu, H. W.; Liu, D.; Qing, W. et al. Beyond a linker: The role of photochemistry of crosslinkers in the direct optical patterning of colloidal nanocrystals. Angew. Chem., Int. Ed. 2022, 61, e202202633.

[117]

Liu, D.; Weng, K. K.; Lu, S. Y.; Li, F.; Abudukeremu, H.; Zhang, L. P.; Yang, Y. C.; Hou, J. Y.; Qiu, H. W.; Fu, Z. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci. Adv. 2022, 8, eabm8433.

[118]

Li, F.; Chen, C. H.; Lu, S. Y.; Chen, X. G.; Liu, W. Y.; Weng, K. K.; Fu, Z.; Liu, D.; Zhang, L. P.; Abudukeremu, H. et al. Direct patterning of colloidal nanocrystals via thermally activated ligand chemistry. ACS Nano 2022, 16, 13674–13683.

[119]

Yang, J.; Hahm, D.; Kim, K.; Rhee, S.; Lee, M.; Kim, S.; Chang, J. H.; Park, H. W.; Lim, J.; Lee, M. et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat. Commun. 2020, 11, 2874.

[120]

Qie, Y.; Hu, H. L.; Yu, K. B.; Zhong, C.; Ju, S. M.; Liu, Y. B.; Guo, T. L.; Li, F. S. Ligand-nondestructive direct photolithography assisted by semiconductor polymer cross-linking for high-resolution quantum dot light-emitting diodes. Nano Lett. 2024, 24, 1254–1260.

[121]

Liu, D.; Weng, K. K.; Zhao, H. F.; Wang, S.; Qiu, H. W.; Luo, X. Y.; Lu, S. Y.; Duan, L.; Bai, S.; Zhang, H. et al. Nondestructive direct optical patterning of perovskite nanocrystals with carbene-based ligand cross-linkers. ACS Nano 2024, 18, 6896–6907.

[122]

Yang, J.; Lee, M.; Park, S. Y.; Park, M.; Kim, J.; Sitapure, N.; Hahm, D.; Rhee, S.; Lee, D.; Jo, H. et al. Nondestructive photopatterning of heavy-metal-free quantum dots. Adv. Mater. 2022, 34, 2205504.

[123]

Morinaga, M.; Iwaki, T.; Tanaka, H.; Lagzi, I.; Nakanishi, H. Patterning perovskite quantum dots using photopolymerization. ACS Appl. Mater. Interfaces 2023, 15, 17152–17162.

[124]

Carbonell, C.; Valles, D.; Wong, A. M.; Carlini, A. S.; Touve, M. A.; Korpanty, J.; Gianneschi, N. C.; Braunschweig, A. B. Polymer brush hypersurface photolithography. Nat. Commun. 2020, 11, 1244.

[125]

Ozdemir, R.; Van Avermaet, H.; Erdem, O.; Schiettecatte, P.; Hens, Z.; Aubert, T. Quantum dot patterning and encapsulation by maskless lithography for display technologies. ACS Appl. Mater. Interfaces 2023, 15, 9629–9637.

[126]

Li, F.; Liu, S. F.; Liu, W. Y.; Hou, Z. W.; Jiang, J. X.; Fu, Z.; Wang, S.; Si, Y. L. et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals. Science 2023, 381, 1468–1474.

[127]

Zhan, W. J.; Meng, L. H.; Shao, C. D.; Wu, X. G.; Shi, K. B.; Zhong, H. Z. In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 2021, 8, 765–770.

[128]

Nie, L.; Wang, T.; Yu, X.; Gao, W.; Peng, Q. P.; Xia, Z. G.; Qiu, J. B.; Yu, S. F.; Xu, X. H. Multicolor display fabricated via stacking CW laser-patterned perovskite films. ACS Energy Lett. 2023, 8, 2025–2032.

[129]

Wang, S.; Zhou, Z.; Li, B.; Wang, C.; Liu, Q. Progresses on new generation laser direct writing technique. Mater. Today Nano 2021, 16, 100142.

[130]

Martin, C.; Prudnikau, A.; Orazi, L.; Gaponik, N.; Lesnyak, V. Selectively tunable luminescence of perovskite nanocrystals embedded in polymer matrix allows direct laser patterning. Adv. Opt. Mater. 2022, 10, 2200201.

Nano Research
Cite this article:
Chen Z, Li Y, Man Z, et al. Research progress of quantum dot photolithography patterning and direct photolithography application. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6896-7
Topics:

307

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 June 2024
Revised: 16 July 2024
Accepted: 17 July 2024
Published: 24 August 2024
© Tsinghua University Press 2024
Return