AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pyrimidine-containing covalent organic frameworks for efficient photosynthesis of hydrogen peroxide via one-step two electron oxygen reduction process

Hongyu Chen1Hao Zhang2Kai Chi2( )Yan Zhao2( )
Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200433, China
Show Author Information

Graphical Abstract

Here, we developed an efficient photocatalyst by incorporating pyrimidine units into benzotrithiophene-based covalent organic framework (BTT-MD-COF), enabling the photosynthesis of H2O2 via the one-step two electron oxygen reduction pathway.

Abstract

The photocatalytic oxygen reduction reaction (ORR), particularly the one-step two-electron (2e) pathway, is a highly promising strategy for efficient and selective hydrogen peroxide (H2O2) synthesis. However, constructing efficient photocatalysts to achieve a one-step 2e ORR process remains a significant challenge. Herein, we developed an efficient photocatalyst by incorporating pyrimidine units into benzotrithiophene-based covalent organic framework (BTT-MD-COF), enabling the photosynthesis of H2O2 via the one-step 2e ORR pathway with O2 and water. Under visible-light irradiation, BTT-MD-COF exhibited a high H2O2 production rate of up to 5691.2 μmol·h−1·g−1. Further experimental results and theoretical studies revealed that the introduction of pyrimidine units accelerates the separation of photoinduced electron–hole pairs and promotes Yeager-type O2 adsorption, which alters the two-step 2e ORR process to the direct one-step 2e process. This work offers a new avenue to create metal-free catalysts for efficient photosynthesis of H2O2.

Electronic Supplementary Material

Download File(s)
6897_ESM.pdf (2.7 MB)

References

[1]

Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; de León, C. P.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.

[2]

Tang, J. Y.; Zhao, T. S.; Solanki, D.; Miao, X. B.; Zhou, W. G.; Hu, S. Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule 2021, 5, 1432–1461.

[3]

Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

[4]

Yang, H. F.; Li, C.; Liu, T.; Fellowes, T.; Chong, S. Y.; Catalano, L.; Bahri, M.; Zhang, W. W.; Xu, Y. J.; Liu, L. J. et al. Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide production. Nat. Nanotechnol. 2023, 18, 307–315.

[5]

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

[6]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[7]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[8]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[9]

Zhang, Y. N.; Pan, C. S.; Bian, G. M.; Xu, J.; Dong, Y. M.; Zhang, Y.; Lou, Y.; Liu, W. X.; Zhu, Y. F. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 2023, 8, 361–371.

[10]

Zhai, L. P.; Xie, Z. P.; Cui, C. X.; Yang, X. B.; Xu, Q.; Ke, X. T.; Liu, M. H.; Qu, L. B.; Chen, X.; Mi, L. W. Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production. Chem. Mater. 2022, 34, 5232–5240.

[11]

Das, P.; Chakraborty, G.; Roeser, J.; Vogl, S.; Rabeah, J.; Thomas, A. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production. J. Am. Chem. Soc. 2023, 145, 2975–2984.

[12]

Cheng, H.; Cheng, J.; Wang, L.; Xu, H. X. Reaction pathways toward sustainable photosynthesis of hydrogen peroxide by polymer photocatalysts. Chem. Mater. 2022, 34, 4259–4273.

[13]

Yu, H.; Zhang, F. T.; Chen, Q.; Zhou, P. K.; Xing, W. D.; Wang, S. B.; Zhang, G. G.; Jiang, Y.; Chen, X. Vinyl-group-anchored covalent organic framework for promoting the photocatalytic generation of hydrogen peroxide. Angew. Chem., Int. Ed. 2024, 63, e202402297.

[14]

Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

[15]

An, S. H.; Lu, C. B.; Xu, Q.; Lian, C.; Peng, C. J.; Hu, J.; Zhuang, X. D.; Liu, H. L. Constructing catalytic crown ether-based covalent organic frameworks for electroreduction of CO2. ACS Energy Lett. 2021, 6, 3496–3502.

[16]

Zhao, R. Y.; Wang, T.; Li, J. J.; Shi, Y. X.; Hou, M.; Yang, Y.; Zhang, Z. C.; Lei, S. B. Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Nano Res. 2023, 16, 8570–8595.

[17]

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

[18]

Yong, Z. J.; Ma, T. Y. Solar-to-H2O2 catalyzed by covalent organic frameworks. Angew. Chem., Int. Ed. 2023, 62, e202308980.

[19]

Wang, T.; Zhu, Y. Q.; Wang, W.; Niu, J. F.; Lu, Z. Y.; He, P. L. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. 2024, 17, 5975–5984.

[20]

Liu, Y.; Shi, Y. W.; Wang, H.; Zhang, S. B. Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation. Nano Res. 2024, 17, 5835–5844.

[21]

Zhao, K.; Qiao, H. J.; Wang, S. X.; Xu, X. X.; Wang, C. Y.; Jiao, M. L.; Yang, L. T.; Kong, X. T.; Zhu, Z. Q.; Qin, N. et al. Halogen regulation in vinylene-linked covalent organic frameworks for efficient photocatalytic C–H thiolation of quinone derivatives. ACS Materials Lett. 2024, 6, 212–221.

[22]

Liao, Q. B.; Sun, Q. N.; Xu, H. C.; Wang, Y. D.; Xu, Y.; Li, Z. Y.; Hu, J. W.; Wang, D.; Li, H. J.; Xi, K. Regulating relative nitrogen locations of diazine functionalized covalent organic frameworks for overall H2O2 photosynthesis. Angew. Chem., Int. Ed. 2023, 62, e202310556.

[23]

Wu, W. J.; Li, Z. X.; Liu, S. Y.; Zhang, D.; Cai, B. Z.; Liang, Y. Z.; Wu, M. X.; Liao, Y. Z.; Zhao, X. J. Pyridine-based covalent organic frameworks with pyridyl-imine structures for boosting photocatalytic H2O2 production via one-step 2e oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202404563.

[24]

Luo, Y.; Zhang, B. P.; Liu, C. C.; Xia, D. H.; Ou, X. W.; Cai, Y. P.; Zhou, Y.; Jiang, J.; Han, B. Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202305355.

[25]

Hou, Y. H.; Zhou, P.; Liu, F. Y.; Lu, Y. Y.; Tan, H.; Li, Z. M.; Tong, M. P.; Ni, J. R. Efficient photosynthesis of hydrogen peroxide by cyano-containing covalent organic frameworks from water, air and sunlight. Angew. Chem., Int. Ed. 2024, 63, e202318562.

[26]
Chen, Y. Z.; Liu, R. Y.; Guo, Y. Y.; Wu, G.; Sum, T. C.; Yang, S. W.; Jiang, D. L. Hierarchical assembly of donor–acceptor covalent organic frameworks for photosynthesis of hydrogen peroxide from water and air. Nat. Synth., in press, DOI: 10.1038/s44160-024-00542-4.
[27]

Yue, J. Y.; Song, L. P.; Fan, Y. F.; Pan, Z. X.; Yang, P.; Ma, Y.; Xu, Q.; Tang, B. Thiophene-containing covalent organic frameworks for overall photocatalytic H2O2 synthesis in water and seawater. Angew. Chem., Int. Ed. 2023, 62, e202309624.

[28]

Qin, C. C.; Wu, X. D.; Tang, L.; Chen, X. H.; Li, M.; Mou, Y.; Su, B.; Wang, S. B.; Feng, C. Y.; Liu, J. W. et al. Dual donor–acceptor covalent organic frameworks for hydrogen peroxide photosynthesis. Nat. Commun. 2023, 14, 5238.

[29]

Chen, D.; Chen, W. B.; Wu, Y. T.; Wang, L.; Wu, X. J.; Xu, H. X.; Chen, L. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem., Int. Ed. 2023, 62, e202217479.

[30]

Wang, E. P.; Luo, L. X.; Feng, Y.; Wu, A. M.; Li, H. Y.; Luo, X. S.; Guo, Y. G.; Tan, Z. H.; Zhu, F. J.; Yan, X. H. et al. Ultrafine ordered L12-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells. J. Energy Chem. 2024, 93, 157–165.

[31]

Zhang, H. W.; Chen, H. C.; Feizpoor, S.; Li, L. F.; Zhang, X.; Xu, X. F.; Zhuang, Z. C.; Li, Z. S.; Hu, W. Y.; Snyders, R. et al. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries. Adv. Mater. 2024, 36, 2400523.

[32]

Luo, L. X.; Fu, C. H.; Tan, Z. H.; Luo, X. S.; Guo, Y. G.; Cai, X. Y.; Cheng, X. J.; Yan, X. H.; Kang, Q.; Zhuang, Z. C. et al. Altering the electronic structure and surface chemical environment of Pt{100} facets via synergizing with Ir species for enhanced oxygen-reduction activity and stability. Int. J. Hydrogen Energy 2024, 53, 483–489.

[33]

Yang, Z. H.; Ma, P. C.; Li, F. R.; Guo, H. Q.; Kang, C. Q.; Gao, L. X. Ultrahigh thermal-stability polyimides with low CTE and required flexibility by formation of hydrogen bonds between poly(amic acid)s. Eur. Polym. J. 2021, 148, 110369.

[34]

Zeng, T. W.; Ling, Y.; Jiang, W. T.; Yao, X.; Tao, Y.; Liu, S.; Liu, H. Y.; Yang, T. Y.; Wen, W.; Jiang, S. et al. Atomic observation and structural evolution of covalent organic framework rotamers. Proc. Natl. Acad. Sci. USA 2024, 121, e2320237121.

[35]

Cheng, H.; Lv, H. F.; Cheng, J.; Wang, L.; Wu, X. J.; Xu, H. X. Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production. Adv. Mater. 2022, 34, 2107480.

[36]

Yang, M. Y.; Zhang, S. B.; Zhang, M.; Li, Z. H.; Liu, Y. F.; Liao, X.; Lu, M.; Li, S. L.; Lan, Y. Q. Three-motif molecular junction type covalent organic frameworks for efficient photocatalytic aerobic oxidation. J. Am. Chem. Soc. 2024, 146, 3396–3404.

[37]

Liu, F. Y.; Ma, Z. Y.; Deng, Y. C.; Wang, M.; Zhou, P.; Liu, W.; Guo, S. H.; Tong, M. P.; Ma, D. Tunable covalent organic frameworks with different heterocyclic nitrogen locations for efficient Cr(VI) reduction, Escherichia coli disinfection, and paracetamol degradation under visible-light irradiation. Environ. Sci. Technol. 2021, 55, 5371–5381.

[38]

Feng, S. F.; Cheng, H.; Chen, F.; Liu, X. M.; Wang, Z. Q.; Xu, H. X.; Hua, J. L. Rational design of covalent organic frameworks with redox-active catechol moieties for high-performance overall photosynthesis of hydrogen peroxide. ACS Catal. 2024, 14, 7736–7745.

[39]

Zhao, Y. X.; Yang, Y. J.; Xia, T.; Tian, H.; Li, Y. P.; Sui, Z.; Yuan, N.; Tian, X. L.; Chen, Q. Pyrimidine-functionalized covalent organic framework and its cobalt complex as an efficient electrocatalyst for oxygen evolution reaction. ChemSusChem 2021, 14, 4556–4562.

[40]

Li, J. L.; Jia, J.; Suo, J. Q.; Li, C. Y.; Wang, Z. W.; Li, H.; Valtchev, V.; Qiu, S. L.; Liu, X. M.; Fang, Q. R. Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 2023, 11, 18349–18355.

[41]

Jin, F. Z.; Lin, E.; Wang, T. H.; Yan, D.; Yang, Y.; Chen, Y.; Cheng, P.; Zhang, Z. J. Rationally fabricating 3D porphyrinic covalent organic frameworks with scu topology as highly efficient photocatalysts. Chem 2022, 8, 3064–3080.

[42]

Chi, W. W.; Liu, B.; Dong, Y. M.; Zhang, J. W.; Sun, X. Y.; Pan, C. S.; Zhao, H.; Ling, Y. J.; Zhu, Y. F. Boosting H2O2 photosynthesis by accumulating photo-electrons on carbonyl active site of polyimide covalent organic frameworks. Appl. Catal. B: Environ. Energy 2024, 355, 124077.

[43]

Li, P. J.; Ge, F. Y.; Yang, Y.; Wang, T. Y.; Zhang, X. Y.; Zhang, K.; Shen, J. Y. 1D covalent organic frameworks triggering highly efficient photosynthesis of H2O2 via controllable modular design. Angew. Chem., Int. Ed. 2024, 63, e202319885.

[44]

Wu, J.; Zhang, Q.; Wang, F. Rational design of dibenzothiophene-S, S-dioxide-containing conjugated polymers for highly efficient photosynthesis of hydrogen peroxide in pure water. J. Mater. Chem. A 2024, 12, 4656–4665.

[45]

Liu, R. Y.; Chen, Y. Z.; Yu, H. D.; Položij, M.; Guo, Y. Y.; Sum, T. C.; Heine, T.; Jiang, D. L. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 2024, 7, 195–206.

[46]

Wang, Q.; Wang, C.; Zheng, K. P.; Wang, B. B.; Wang, Z.; Zhang, C. H.; Long, X. J. Positional thiophene isomerization: A geometric strategy for precisely regulating the electronic state of covalent organic frameworks to boost oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202320037.

Nano Research
Pages 9498-9506
Cite this article:
Chen H, Zhang H, Chi K, et al. Pyrimidine-containing covalent organic frameworks for efficient photosynthesis of hydrogen peroxide via one-step two electron oxygen reduction process. Nano Research, 2024, 17(11): 9498-9506. https://doi.org/10.1007/s12274-024-6897-6
Topics:

269

Views

0

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 17 June 2024
Revised: 12 July 2024
Accepted: 18 July 2024
Published: 17 August 2024
© Tsinghua University Press 2024
Return