Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The photocatalytic oxygen reduction reaction (ORR), particularly the one-step two-electron (2e−) pathway, is a highly promising strategy for efficient and selective hydrogen peroxide (H2O2) synthesis. However, constructing efficient photocatalysts to achieve a one-step 2e− ORR process remains a significant challenge. Herein, we developed an efficient photocatalyst by incorporating pyrimidine units into benzotrithiophene-based covalent organic framework (BTT-MD-COF), enabling the photosynthesis of H2O2 via the one-step 2e− ORR pathway with O2 and water. Under visible-light irradiation, BTT-MD-COF exhibited a high H2O2 production rate of up to 5691.2 μmol·h−1·g−1. Further experimental results and theoretical studies revealed that the introduction of pyrimidine units accelerates the separation of photoinduced electron–hole pairs and promotes Yeager-type O2 adsorption, which alters the two-step 2e− ORR process to the direct one-step 2e− process. This work offers a new avenue to create metal-free catalysts for efficient photosynthesis of H2O2.
Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; de León, C. P.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.
Tang, J. Y.; Zhao, T. S.; Solanki, D.; Miao, X. B.; Zhou, W. G.; Hu, S. Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule 2021, 5, 1432–1461.
Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.
Yang, H. F.; Li, C.; Liu, T.; Fellowes, T.; Chong, S. Y.; Catalano, L.; Bahri, M.; Zhang, W. W.; Xu, Y. J.; Liu, L. J. et al. Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide production. Nat. Nanotechnol. 2023, 18, 307–315.
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.
Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.
Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.
Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.
Zhang, Y. N.; Pan, C. S.; Bian, G. M.; Xu, J.; Dong, Y. M.; Zhang, Y.; Lou, Y.; Liu, W. X.; Zhu, Y. F. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 2023, 8, 361–371.
Zhai, L. P.; Xie, Z. P.; Cui, C. X.; Yang, X. B.; Xu, Q.; Ke, X. T.; Liu, M. H.; Qu, L. B.; Chen, X.; Mi, L. W. Constructing synergistic triazine and acetylene cores in fully conjugated covalent organic frameworks for cascade photocatalytic H2O2 production. Chem. Mater. 2022, 34, 5232–5240.
Das, P.; Chakraborty, G.; Roeser, J.; Vogl, S.; Rabeah, J.; Thomas, A. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production. J. Am. Chem. Soc. 2023, 145, 2975–2984.
Cheng, H.; Cheng, J.; Wang, L.; Xu, H. X. Reaction pathways toward sustainable photosynthesis of hydrogen peroxide by polymer photocatalysts. Chem. Mater. 2022, 34, 4259–4273.
Yu, H.; Zhang, F. T.; Chen, Q.; Zhou, P. K.; Xing, W. D.; Wang, S. B.; Zhang, G. G.; Jiang, Y.; Chen, X. Vinyl-group-anchored covalent organic framework for promoting the photocatalytic generation of hydrogen peroxide. Angew. Chem., Int. Ed. 2024, 63, e202402297.
Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.
An, S. H.; Lu, C. B.; Xu, Q.; Lian, C.; Peng, C. J.; Hu, J.; Zhuang, X. D.; Liu, H. L. Constructing catalytic crown ether-based covalent organic frameworks for electroreduction of CO2. ACS Energy Lett. 2021, 6, 3496–3502.
Zhao, R. Y.; Wang, T.; Li, J. J.; Shi, Y. X.; Hou, M.; Yang, Y.; Zhang, Z. C.; Lei, S. B. Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Nano Res. 2023, 16, 8570–8595.
Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.
Yong, Z. J.; Ma, T. Y. Solar-to-H2O2 catalyzed by covalent organic frameworks. Angew. Chem., Int. Ed. 2023, 62, e202308980.
Wang, T.; Zhu, Y. Q.; Wang, W.; Niu, J. F.; Lu, Z. Y.; He, P. L. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Res. 2024, 17, 5975–5984.
Liu, Y.; Shi, Y. W.; Wang, H.; Zhang, S. B. Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation. Nano Res. 2024, 17, 5835–5844.
Zhao, K.; Qiao, H. J.; Wang, S. X.; Xu, X. X.; Wang, C. Y.; Jiao, M. L.; Yang, L. T.; Kong, X. T.; Zhu, Z. Q.; Qin, N. et al. Halogen regulation in vinylene-linked covalent organic frameworks for efficient photocatalytic C–H thiolation of quinone derivatives. ACS Materials Lett. 2024, 6, 212–221.
Liao, Q. B.; Sun, Q. N.; Xu, H. C.; Wang, Y. D.; Xu, Y.; Li, Z. Y.; Hu, J. W.; Wang, D.; Li, H. J.; Xi, K. Regulating relative nitrogen locations of diazine functionalized covalent organic frameworks for overall H2O2 photosynthesis. Angew. Chem., Int. Ed. 2023, 62, e202310556.
Wu, W. J.; Li, Z. X.; Liu, S. Y.; Zhang, D.; Cai, B. Z.; Liang, Y. Z.; Wu, M. X.; Liao, Y. Z.; Zhao, X. J. Pyridine-based covalent organic frameworks with pyridyl-imine structures for boosting photocatalytic H2O2 production via one-step 2e− oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202404563.
Luo, Y.; Zhang, B. P.; Liu, C. C.; Xia, D. H.; Ou, X. W.; Cai, Y. P.; Zhou, Y.; Jiang, J.; Han, B. Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202305355.
Hou, Y. H.; Zhou, P.; Liu, F. Y.; Lu, Y. Y.; Tan, H.; Li, Z. M.; Tong, M. P.; Ni, J. R. Efficient photosynthesis of hydrogen peroxide by cyano-containing covalent organic frameworks from water, air and sunlight. Angew. Chem., Int. Ed. 2024, 63, e202318562.
Yue, J. Y.; Song, L. P.; Fan, Y. F.; Pan, Z. X.; Yang, P.; Ma, Y.; Xu, Q.; Tang, B. Thiophene-containing covalent organic frameworks for overall photocatalytic H2O2 synthesis in water and seawater. Angew. Chem., Int. Ed. 2023, 62, e202309624.
Qin, C. C.; Wu, X. D.; Tang, L.; Chen, X. H.; Li, M.; Mou, Y.; Su, B.; Wang, S. B.; Feng, C. Y.; Liu, J. W. et al. Dual donor–acceptor covalent organic frameworks for hydrogen peroxide photosynthesis. Nat. Commun. 2023, 14, 5238.
Chen, D.; Chen, W. B.; Wu, Y. T.; Wang, L.; Wu, X. J.; Xu, H. X.; Chen, L. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem., Int. Ed. 2023, 62, e202217479.
Wang, E. P.; Luo, L. X.; Feng, Y.; Wu, A. M.; Li, H. Y.; Luo, X. S.; Guo, Y. G.; Tan, Z. H.; Zhu, F. J.; Yan, X. H. et al. Ultrafine ordered L12-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells. J. Energy Chem. 2024, 93, 157–165.
Zhang, H. W.; Chen, H. C.; Feizpoor, S.; Li, L. F.; Zhang, X.; Xu, X. F.; Zhuang, Z. C.; Li, Z. S.; Hu, W. Y.; Snyders, R. et al. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries. Adv. Mater. 2024, 36, 2400523.
Luo, L. X.; Fu, C. H.; Tan, Z. H.; Luo, X. S.; Guo, Y. G.; Cai, X. Y.; Cheng, X. J.; Yan, X. H.; Kang, Q.; Zhuang, Z. C. et al. Altering the electronic structure and surface chemical environment of Pt{100} facets via synergizing with Ir species for enhanced oxygen-reduction activity and stability. Int. J. Hydrogen Energy 2024, 53, 483–489.
Yang, Z. H.; Ma, P. C.; Li, F. R.; Guo, H. Q.; Kang, C. Q.; Gao, L. X. Ultrahigh thermal-stability polyimides with low CTE and required flexibility by formation of hydrogen bonds between poly(amic acid)s. Eur. Polym. J. 2021, 148, 110369.
Zeng, T. W.; Ling, Y.; Jiang, W. T.; Yao, X.; Tao, Y.; Liu, S.; Liu, H. Y.; Yang, T. Y.; Wen, W.; Jiang, S. et al. Atomic observation and structural evolution of covalent organic framework rotamers. Proc. Natl. Acad. Sci. USA 2024, 121, e2320237121.
Cheng, H.; Lv, H. F.; Cheng, J.; Wang, L.; Wu, X. J.; Xu, H. X. Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production. Adv. Mater. 2022, 34, 2107480.
Yang, M. Y.; Zhang, S. B.; Zhang, M.; Li, Z. H.; Liu, Y. F.; Liao, X.; Lu, M.; Li, S. L.; Lan, Y. Q. Three-motif molecular junction type covalent organic frameworks for efficient photocatalytic aerobic oxidation. J. Am. Chem. Soc. 2024, 146, 3396–3404.
Liu, F. Y.; Ma, Z. Y.; Deng, Y. C.; Wang, M.; Zhou, P.; Liu, W.; Guo, S. H.; Tong, M. P.; Ma, D. Tunable covalent organic frameworks with different heterocyclic nitrogen locations for efficient Cr(VI) reduction, Escherichia coli disinfection, and paracetamol degradation under visible-light irradiation. Environ. Sci. Technol. 2021, 55, 5371–5381.
Feng, S. F.; Cheng, H.; Chen, F.; Liu, X. M.; Wang, Z. Q.; Xu, H. X.; Hua, J. L. Rational design of covalent organic frameworks with redox-active catechol moieties for high-performance overall photosynthesis of hydrogen peroxide. ACS Catal. 2024, 14, 7736–7745.
Zhao, Y. X.; Yang, Y. J.; Xia, T.; Tian, H.; Li, Y. P.; Sui, Z.; Yuan, N.; Tian, X. L.; Chen, Q. Pyrimidine-functionalized covalent organic framework and its cobalt complex as an efficient electrocatalyst for oxygen evolution reaction. ChemSusChem 2021, 14, 4556–4562.
Li, J. L.; Jia, J.; Suo, J. Q.; Li, C. Y.; Wang, Z. W.; Li, H.; Valtchev, V.; Qiu, S. L.; Liu, X. M.; Fang, Q. R. Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 2023, 11, 18349–18355.
Jin, F. Z.; Lin, E.; Wang, T. H.; Yan, D.; Yang, Y.; Chen, Y.; Cheng, P.; Zhang, Z. J. Rationally fabricating 3D porphyrinic covalent organic frameworks with scu topology as highly efficient photocatalysts. Chem 2022, 8, 3064–3080.
Chi, W. W.; Liu, B.; Dong, Y. M.; Zhang, J. W.; Sun, X. Y.; Pan, C. S.; Zhao, H.; Ling, Y. J.; Zhu, Y. F. Boosting H2O2 photosynthesis by accumulating photo-electrons on carbonyl active site of polyimide covalent organic frameworks. Appl. Catal. B: Environ. Energy 2024, 355, 124077.
Li, P. J.; Ge, F. Y.; Yang, Y.; Wang, T. Y.; Zhang, X. Y.; Zhang, K.; Shen, J. Y. 1D covalent organic frameworks triggering highly efficient photosynthesis of H2O2 via controllable modular design. Angew. Chem., Int. Ed. 2024, 63, e202319885.
Wu, J.; Zhang, Q.; Wang, F. Rational design of dibenzothiophene-S, S-dioxide-containing conjugated polymers for highly efficient photosynthesis of hydrogen peroxide in pure water. J. Mater. Chem. A 2024, 12, 4656–4665.
Liu, R. Y.; Chen, Y. Z.; Yu, H. D.; Položij, M.; Guo, Y. Y.; Sum, T. C.; Heine, T.; Jiang, D. L. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 2024, 7, 195–206.
Wang, Q.; Wang, C.; Zheng, K. P.; Wang, B. B.; Wang, Z.; Zhang, C. H.; Long, X. J. Positional thiophene isomerization: A geometric strategy for precisely regulating the electronic state of covalent organic frameworks to boost oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202320037.