AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Building of lightweight Nb2CTx MXene@Co nitrogen-doped carbon nanosheet arrays@carbon fiber aerogels for high-efficiency electromagnetic wave absorption in X and Ku bands inspired by sea cucumber

Jiatong Yan1,2Ce Cui1,2Wenhao Bai4Hong Tang5Ronghui Guo1,2,3( )
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644005, China
High-Tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu 610041, China
Aviation Key Laboratory of Science and Technology on Structural Corrosion Prevention and Control, China Special Vehicle Research Institute, Jingmen 448035, China
Graduate School of Energy Science, Kyoto University, Kyoto City 606-8501, Japan
Show Author Information

Graphical Abstract

Abstract

The problems of electromagnetic wave (EMW) pollution in X and Ku bands (8–18 GHz) are becoming more and more serious. Therefore, it is urgent to design EMW absorbing materials with high-efficiency such as thin thickness, lightweight, wide bandwidth and strong EMW absorption. Inspired by the biomorph of sea cucumber, Nb2CTx MXene@Co nitrogen-doped carbon nanosheet arrays@carbon fiber aerogels (Nb2CTx@Co-NC@CFA, Nb2CTx = niobium carbide) were constructed by self-assembly, in-situ chemical deposition and subsequent pyrolysis. The carbon fiber aerogel, as the basic skeleton of sea cucumber, forms lightweight three-dimensional interconnected conductive network, enhances the dielectric loss and extends the multiple reflection and absorption paths of EMW. As the tentacles of sea cucumber surface, Nb2CTx MXene and Co nitrogen-doped carbon nanosheet arrays exist rich heterogeneous interfaces, which play an important role in improving EMW polarization loss and optimizing impedance matching. The minimum reflection loss (RLmin) of Nb2CTx@Co-NC@CFA reaches –54.7 dB at 9.84 GHz (2.36 mm) with a low filling ratio of 10 wt.% and the effective absorption bandwidth (EAB) of Nb2CTx@Co-NC@CFA reaches 2.96 GHz (8.48–11.44 GHz) with 2.36 mm and 5.2 GHz (12.8–18 GHz) with 1.6 mm, covering most of X and Ku bands by adjusting thickness. The radar cross section (RCS) value of Nb2CTx@Co-NC@CFA is 26.64 dB·m2, which is lower than that of the perfect electrical conductor (PEC), indicating that Nb2CTx@Co-NC@CFA can effectively decrease the probability of the target being detected by the radar detector. This work provides ideas for design and development of EMW absorbing materials with high-efficiency EMW absorption in X and Ku bands.

Electronic Supplementary Material

Download File(s)
6898_ESM.pdf (3.7 MB)

References

[1]

Nguyen, L. T.; Goh, C. J.; Bai, T. L.; Ong, R. H.; Goh, X. Y.; Duong, H. M. Scalable fabrication of lightweight carbon nanotube aerogel composites for full X-band electromagnetic wave absorption. Carbon 2024, 219, 118811.

[2]

Shu, R. W.; Xu, J.; Shi, J. J. Construction of nitrogen-doped graphene-based ternary magnetic composite aerogel towards excellent electromagnetic absorption in the Ku-band. J. Alloys Compd. 2023, 956, 170349.

[3]

Shu, R. W.; Zhao, Z. W.; Yang, X. H. Fabrication of nitrogen-doped reduced graphene oxide/porous magnesium ferrite@silica dioxide composite with excellent dual-band electromagnetic absorption performance. Chem. Eng. J. 2023, 473, 145224.

[4]

Shu, R. W.; Yang, X. H.; Zhao, Z. W. Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 2023, 210, 118047.

[5]

Ren, B.; Deng, Y. M.; Jia, Y. J.; Han, L. Y.; Wang, X.; Li, H. J. Achieving broadband electromagnetic absorption at a wide temperature range up to 1273 K by metamaterial design on polymer-derived SiC–BN@CNT ceramic composites. Chem. Eng. J. 2023, 478, 147251.

[6]

Zheng, Z. R.; Chen, Y.; Liu, H. Q.; Lin, H.; Zhao, H.; Fang, R. P.; Chen, Y. X.; Yin, X. Y.; Hou, L. X. Facile fabrication of NiFe2O4–FeNi/C heterointerface composites with balanced magnetic-dielectric loss for boosting electromagnetic wave absorption. Chem. Eng. J. 2024, 481, 148224.

[7]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res 2023, 16, 10666–10677.

[8]

Sun, N.; Li, W.; Wei, S.; Gao, H.; Wang, W.; Chen, S. G. Facile synthesis of lightweight 3D hierarchical NiCo2O4 nanoflowers/reduced graphene oxide composite foams with excellent electromagnetic wave absorption performance. J. Mater. Sci. Technol. 2021, 91, 187–199.

[9]

Li, S. X.; Sun, Y. J.; Zhang, L. Y.; Jiang, X. Z.; Yu, H. Y. Heterogeneous interface engineering of bionic corn-structured ternary nanocomposites for excellent low-frequency microwave absorption. Mater. Today Phys. 2024, 42, 101390.

[10]

Li, Q. Y.; Liu, L. Y.; Kimura, H.; Zhang, X. Y.; Liu, X. Y.; Xie, X. B.; Sun, X. Q.; Xu, C. Y.; Du, W.; Hou, C. X. Restricted growth of molybdenum carbide nanoparticles in hierarchically porous nitrogen-doped carbon matrix for boosting electromagnetic wave absorption performance. J. Colloid Interface Sci. 2024, 655, 634–642.

[11]

Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2022, 32, 2108194.

[12]

Tian, Y. X.; Huang, M.; Kong, N. Z.; Wang, Z. Q.; Ye, C.; Fu, L. Q.; Jia, K.; Fan, J. F.; Tan, R. X.; Han, F. Designing insulative SiC coating layer on the artificial graphite particle to achieve synergy of wave absorption and thermal conduction. Carbon 2023, 214, 118352.

[13]

Zeng, X. J.; Nie, T. L.; Zhao, C.; Yu, R. H. Homogeneous-heterogeneous interfaces in 2D/2D CoAl/Co9S8/Ni3S4 heterostructures for electromagnetic wave absorption. J. Colloid Interface Sci. 2023, 648, 940–950.

[14]

Wang, Z. J.; Meng, L.; Li, X. L.; Li, J. J. Fabrication of core-shell Ni@C@PANI nanocomposite-based bionic coating with multi-bands EWM adaptability inspired by porous structure of pachliopta aristolochiae wings. Prog. Org. Coat. 2023, 179, 107498.

[15]

Fang, G.; He, T. A.; Hu, X. X.; Yang, X. M.; Zheng, S. Q.; Xu, G. Y.; Liu, C. Y. Bionic octopus structure Inspired Stress-Driven reconfigurable microwave absorption and multifunctional compatibility in infrared stealth and De-icing. Chem. Eng. J. 2023, 467, 143266.

[16]

Yang, Y.; Cheng, J.; Pan, F.; Lu, S. D.; Wang, X.; Cai, L.; Guo, H. T.; Jiang, H. J.; Li, L. X.; Wang, J. L. et al. Phragmites-derived magnetic carbon fiber with hollow assembly architecture toward full-covered effective bandwidth at Ku band. Carbon 2023, 213, 118228.

[17]

Hu, J. H.; Jiao, Z. G.; Jiang, J. L.; Hou, Y. B.; Su, X. W.; Zhang, J. X.; Feng, C.; Ma, Y.; Ma, M. L.; Liu, J. X. Simple fabrication of cobalt-nickel alloy/carbon nanocomposite fibers for tunable microwave absorption. J. Colloid Interface Sci. 2023, 652, 1825–1835.

[18]

Cui, C.; Geng, L.; Jiang, S.; Bai, W. H.; Dai, L. L.; Jiang, S. X.; Hu, J.; Ren, E. H.; Guo, R. H. Construction of hierarchical carbon fiber Aerogel@Hollow Co9S8 polyhedron for high-performance electromagnetic wave absorption at low-frequency. Chem. Eng. J. 2023, 466, 143122.

[19]

Jiang, S.; Yan, W. D.; Cui, C.; Wang, W. J.; Yan, J. T.; Tang, H.; Guo, R. H. Bioinspired thermochromic textile based on robust cellulose aerogel fiber for self-adaptive thermal management and dynamic labels. ACS Appl. Mater. Interfaces 2023, 15, 47577–47590.

[20]

Wang, W. K.; Fan, H. J.; Song, L. J.; Wang, Z. Y.; Li, H.; Xiang, J.; Huang, Q.; Chen, X. Q. Organosilicon leather coating technology based on carbon peak strategy. J. Leather Sci. Eng. 2022, 4, 27.

[21]

Wang, C. J.; Jiang, H. T.; Cui, B. W.; Xu, X. D.; Wang, Y. X.; Wang, C. G. ZIF-67 derived Co@carbon nanotubes anchored on carbon fiber for efficient microwave absorption and mechanical enhancement. Ceram. Int. 2024, 50, 1147–1158.

[22]

Yuan, Z. Y.; Cao, J. M.; Valerii, S.; Xu, H.; Wang, L. L.; Han, W. MXene-bonded hollow MoS2/carbon sphere strategy for high-performance flexible sodium ion storage. Chem. Eng. J. 2022, 430, 132755.

[23]

Ahmed, A.; Sharma, S.; Adak, B.; Hossain, M. M.; LaChance, A. M.; Mukhopadhyay, S.; Sun, L. Y. Two-dimensional MXenes: New frontier of wearable and flexible electronics. InfoMat 2022, 4, e12295.

[24]

Ma, Y. N.; Cheng, Y. F.; Wang, J.; Fu, S.; Zhou, M. J.; Yang, Y.; Li, B. W.; Zhang, X.; Nan, C. W. Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat 2022, 4, e12328.

[25]

He, J. Q.; Li, A.; Wang, W. J.; Cui, C.; Jiang, S.; Chen, M. M.; Qin, W. F.; Tang, H.; Guo, R. H. Multifunctional wearable device based on an antibacterial and hydrophobic silver nanoparticles/Ti3C2T x MXene/thermoplastic polyurethane fibrous membrane for electromagnetic shielding and strain sensing. Ind. Eng. Chem. Res. 2023, 62, 9221–9232.

[26]

Ankitha, M.; Vaishag, P. V.; Muhsin, P.; Abdul Rasheed, P. Flexible and disposable electrodes based on SnO2 nanoparticle/Nb2CT x nanosheet composites for selective and ultrasensitive detection of propofol. J. Ind. Eng. Chem. 2024, 131, 449–458.

[27]

Cui, C.; Guo, R. H.; Ren, E. H.; Xiao, H. Y.; Zhou, M.; Lai, X. X.; Qin, Q.; Jiang, S. X.; Qin, W. F. MXene-based rGO/Nb2CT x /Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 2021, 405, 126626.

[28]

Feng, Z. P.; Hao, Y. N.; Qin, J.; Zhong, S. L.; Bi, K.; Zhao, Y.; Yin, L. J.; Pei, J. Y.; Dang, Z. M. Ultrasmall barium titanate nanoparticles modulated stretchable dielectric elastomer sensors with large deformability and high sensitivity. InfoMat 2023, 5, e12413.

[29]

Cui, C.; Bai, W. H.; Jiang, S.; Wang, W. J.; Ren, E. H.; Xiao, H. Y.; Zhou, M.; Zhang, J. W.; Hu, J.; Cheng, C. et al. FeNi LDH/loofah sponge-derived magnetic FeNi alloy nanosheet array/porous carbon hybrids with efficient electromagnetic wave absorption. Ind. Eng. Chem. Res. 2022, 61, 10078–10090.

[30]

Bai, W. H.; Zhai, J. Y.; Zhou, S. G.; Cui, C.; Wang, W. J.; Jiang, S.; Cheng, C.; Ren, E. H.; Xiao, H. Y.; Zhou, M. et al. Flexible MOF on CoXFe1- X OOH@Biomass derived Alloy@Carbon films for efficient electromagnetic interference shielding and energy conversion. Carbon 2022, 199, 96–109.

[31]

Wei, J. H.; Yuan, M.; Wang, S. T.; Wang, X. H.; An, N.; Lv, G. P.; Wu, L. N. Recent advances in metal organic frameworks for the catalytic degradation of organic pollutants. Collagen Leather 2023, 5, 33.

[32]

Cao, M.; Yu, J.; Zhang, X.; Lin, Y. M.; Huang, H. Laccase-functionalized magnetic framework composite enabled chlorophenols degradation, a potential remediation for fungicides residues in leather. J. Leather Sci. Eng. 2022, 4, 21.

[33]

Shu, X. F.; Cheng, J.; Fang, B.; Wang, J. T.; Song, Y. N.; Lu, W.; Zhao, Z. J. Morphology-dependent magnetic role of ZIFs in nitrogen-doped MXene as metallic conductor microwave absorber. Chem. Eng. J. 2023, 474, 145817.

[34]

Wang, X. Y.; Huang, J. G.; Feng, H.; Li, J. F.; Xu, Z. H.; Xiong, K. W.; Zhang, Y. T. Constructing dendrite-flower-shaped Fe3O4 crystals in glass-ceramic materials as novel broadband high-efficient electromagnetic wave absorbers. J. Alloys Compd. 2022, 901, 163541.

[35]

Gu, W. H.; Sheng, J. Q.; Huang, Q. Q.; Wang, G. H.; Chen, J. B.; Ji, G. B. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

[36]

Xu, B. K.; He, Q. C.; Wang, Y. Q.; Yin, X. M. Hollow porous Ni@SiC nanospheres for enhancing electromagnetic wave absorption. Ceram. Int. 2023, 49, 21335–21345.

[37]

Liu, R.; Cao, W. K.; Han, D. M.; Mo, Y. D.; Zeng, H.; Yang, H. C.; Li, W. H. Nitrogen-doped Nb2CT x MXene as anode materials for lithium ion batteries. J. Alloys Compd. 2019, 793, 505–511.

[38]

Fang, D. B.; Liu, S. Q.; Li, J. B.; Jin, H. B. Absorber design based on In/C@Co/C composites for efficient microwave absorption. J. Alloys Compd. 2023, 961, 170992.

[39]

Wen, B.; Yang, H. B.; Lin, Y.; Ma, L.; Qiu, Y.; Hu, F. F.; Zheng, Y. N. Synthesis of core-shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 2021, 9, 3567–3575.

[40]

Huan, X. H.; Wang, H. T.; Deng, W. C.; Yan, J. Q.; Xu, K.; Geng, H. B.; Guo, X. D.; Jia, X. L.; Zhou, J. S.; Yang, X. P. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022, 18, 2105411.

[41]

Jiang, Y. C.; Zhang, H.; Zuo, X. Q.; Sun, C.; Zhang, Y. F.; Huang, H.; Fan, Z.; Li, C. W.; Pan, L. J. Construction of ZnO/Ni@C hollow microspheres as efficient electromagnetic wave absorbers with thin thickness and broad bandwidth. J. Mater. Sci. Technol. 2024, 188, 62–72.

[42]

Song, W.; Zhao, Q. M.; Wang, Z. J. Magnetic biomass porous carbon@Co/CoO nanocomposite for highly efficient microwave absorption. Mater. Res. Bull. 2023, 167, 112371.

[43]

Li, Z. C.; Liang, J.; Wei, Z. H.; Cao, X.; Shan, J. H.; Li, C. W.; Chen, X. Y.; Zhou, D.; Xing, R. Z.; Luo, C. J, et al. Lightweight foam-like nitrogen-doped carbon nanotube complex achieving highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 168, 114–123.

[44]

Mashtalir, O.; Lukatskaya, M. R.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 2015, 27, 3501–3506.

[45]

Xu, X. Q.; Ran, F. T.; Fan, Z. M.; Cheng, Z. J.; Lv, T.; Shao, L.; Liu, Y. Y. Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-Doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 17870–17880.

[46]

Xu, J.; Zhang, X.; Zhao, Z. B.; Hu, H.; Li, B.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 2021, 17, 2102032.

[47]

Yang, J.; Ye, Z. W.; Wang, K. J.; Zhao, Q. Z.; Li, X. Q. Nano-Fe3O4 decorated on carbon aerogel framework: Coupling microstructures synergistic effect for electromagnetic wave absorption. Adv. Powder Technol. 2024, 35, 104301.

[48]

Yang, K. K.; Song, G. L.; Li, Y. Y.; An, Q. D.; Zhai, S. R.; Xiao, Z. Y. Transforming in- situ grown chitosan/ZIF-67 aerogels into 3D N-doped Co/CoO/carbon composites for improved electromagnetic wave absorption. J. Alloys Compd. 2023, 936, 168195.

[49]

Dong, Y. Y.; Zhu, X. J.; Pan, F.; Cai, L.; Jiang, H. J.; Cheng, J.; Shi, Z.; Xiang, Z.; Lu, W. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 2022, 190, 68–79.

[50]

Chen, X. T.; Guo, S. N.; Tan, S. J.; Ma, J. H.; Xu, T.; Wu, Y.; Ji, G. B. An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth. Carbon 2023, 213, 118313.

[51]

Wang, L. N.; Liu, M. C.; Wang, G.; Dai, B.; Yu, F.; Zhang, J. L. An ultralight nitrogen-doped carbon aerogel anchored by Ni–NiO nanoparticles for enhanced microwave adsorption performance. J. Alloys Compd. 2019, 776, 43–51.

[52]

Cui, C.; Geng, L.; Jiang, S.; Bai, W. H.; Dai, L. L.; Ren, E. H.; Liu, L.; Guo, R. H. Architecture design of a bamboo cellulose/Nb2CT x MXene/ZIF-67-derived lightweight Co/Nb2CT x /carbon aerogel for highly efficient electromagnetic wave absorption, thermal insulation, and flame retardant. Ind. Eng. Chem. Res. 2023, 62, 8297–8311.

[53]

Zhang, Y. F.; Zhang, L.; Zhou, B. Q.; Gao, Y. S.; Zhang, B. L. Polarization-driven multifunctional organohydrogels with strain sensitivity toward electromagnetic wave absorption. Nano Res. 2024, 17, 5688–5697.

[54]

Hou, S. K.; Wang, Y.; Gao, F.; Jin, F.; Zhu, B. F.; Wu, Q.; Ge, H. L.; Cao, Z. H.; Yang, H. Biomimetic leaf structures for ultra-thin electromagnetic wave absorption. Nano Res. 2024, 17, 4507–4516.

Nano Research
Cite this article:
Yan J, Cui C, Bai W, et al. Building of lightweight Nb2CTx MXene@Co nitrogen-doped carbon nanosheet arrays@carbon fiber aerogels for high-efficiency electromagnetic wave absorption in X and Ku bands inspired by sea cucumber. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6898-5
Topics:

181

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 June 2024
Revised: 14 July 2024
Accepted: 17 July 2024
Published: 07 September 2024
© Tsinghua University Press 2024
Return