AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Nanoshell-driven carrier engineering of large quantum dots enables ultra-stable and efficient LEDs

Dandan Zhang,§Jianshun Li,§Lei Wang( )Yaqi GuoWeipeng LiuQingli LinLin Song LiHuaibin Shen( )
Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China

§ Dandan Zhang and Jianshun Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Quantum dot (QD) light-emitting diodes (QLEDs) have been considered one of the most promising candidates for next-generation lighting and displays. However, the suboptimal carrier dynamics at the interface between QDs and the hole transport layer (HTL), such as leakage and quenching induced by the accumulation of electrons at high brightness, severely deteriorates the device’s efficiency and stability. Here, we introduced the influence of carrier modulation by nanoshell engineering on the extermal quantum efficiency (EQE) and operation lifetime for QLEDs with large-sized QDs. The shell-driven engineering of energy level positions and band bending effectively eliminates the hole injection barrier and promotes charge injection balance. Photo-assisted Kelvin probe technique reveals that the ZnCdSe/ZnSeS QD/TFB (TFB = poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine)) interface presents an increased surface potential and quasi-Fermi level splitting, reducing heat generation during device operation at high brightness. The shell-driven carrier engineering strategy reveals that our devices exhibit a high external quantum efficiency of 26.44% and an ultralong operation time (exceeding 50,000 h) to 95% of the initial luminance at 1000 cd/m2 (T95@1000 cd/m2). We anticipate that our results provide insights into resolving the issues at the QD-HTL interface and demonstrate the importance of carrier management driven by QD nanostructure tailoring for the commercialization of QLEDs.

Electronic Supplementary Material

Download File(s)
6899_ESM.pdf (1.4 MB)

References

[1]

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

[2]

Wu, Q. Q.; Gong, X. W.; Zhao, D. W.; Zhao, Y. B.; Cao, F.; Wang, H. R.; Wang, S.; Zhang, J. H.; Quintero-Bermudez, R.; Sargent, E. H. et al. Efficient tandem quantum-dot LEDs enabled by an inorganic semiconductor–metal–dielectric interconnecting layer stack. Adv. Mater. 2022, 34, 2108150.

[3]

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

[4]

Xu, H. Y.; Song, J. J.; Zhou, P. H.; Song, Y.; Xu, J.; Shen, H. B.; Fang, S. C.; Gao, Y.; Zuo, Z. J.; Pina, J. M. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics 2024, 18, 186–191.

[5]

Wang, Y.K.; Wan, H. Y.; Teale, S.; Grater, L.; Zhao, F.; Zhang, Z. D.; Duan, H. W.; Imran, M.; Wang, S. D.; Hoogland, S. et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 2024, 629, 586–591.

[6]

Cheng, Y.; Gui, Z. X.; Qiao, R. X.; Fang, S. C.; Ba, G. H.; Liang, T. Y.; Wan, H. Y.; Zhang, Z. H.; Liu, C.; Ma, C. J. et al. Electronic structural insight into high-performance quantum dot light-emitting diodes. Adv. Funct. Mater. 2022, 32, 2207974.

[7]

Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608.

[8]

Deng, Y. Z.; Peng, F.; Lu, Y.; Zhu, X. T.; Jin, W. X.; Qiu, J.; Dong, J. W.; Hao, Y. L.; Di, D. W.; Gao, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 2022, 16, 505–511.

[9]

Li, Z. H.; Chen, F.; Wang, L.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, N.; Li, L. S. Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: Nonblinking, single photoluminescence decay channel, and suppressed FRET. Chem. Mater. 2018, 30, 3668–3676.

[10]

Gao, Y.; Li, B.; Liu, X. N.; Shen, H. B.; Song, Y.; Song, J. J.; Yan, Z. J.; Yan, X. H.; Chong, Y. H.; Yao, R. Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 2023, 18, 1168–1174.

[11]

Lim, J.; Jeong, B. G.; Park, M.; Kim, J. K.; Pietryga, J. M.; Park, Y. S.; Klimov, V. I.; Lee, C.; Lee, D. C.; Bae, W. K. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1− x Cd x S core/shell heterostructured quantum dots. Adv. Mater. 2014, 26, 8034–8040.

[12]

Azadinia, M.; Chun, P.; Lyu, Q.; Cotella, G.; Aziz, H. Differences in electron and hole injection and auger recombination between red, green, and blue CdSe-based quantum dot light emitting devices. ACS Nano 2024, 18, 1485–1495.

[13]

Acharya, K. P.; Nguyen, H. M.; Paulite, M.; Piryatinski, A.; Zhang, J.; Casson, J. L.; Xu, H. W.; Htoon, H.; Hollingsworth, J. A. elucidation of two giants: Challenges to thick-shell synthesis in CdSe/ZnSe and ZnSe/CdS core/shell quantum dots. J. Am. Chem. Soc. 2015, 137, 3755–3758.

[14]

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

[15]

Chen, D. S.; Chen, D.; Dai, X. L.; Zhang, Z. X.; Lin, J.; Deng, Y. Z.; Hao, Y. L.; Zhang, C.; Zhu, H. M.; Gao, F. et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater. 2020, 32, 2006178.

[16]

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

[17]

Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

[18]

Ji, W. Y.; Shen, H. B.; Zhang, H.; Kang, Z. H.; Zhang, H. Z. Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer. Nanoscale 2018, 10, 11103–11109.

[19]

Zhang, W. J.; Li, B.; Chang, C.; Chen, F.; Zhang, Q.; Lin, Q. L.; Wang, L.; Yan, J. H.; Wang, F. F.; Chong, Y. H. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 2024, 15, 783.

[20]

Kim, H. M.; Cho, S.; Kim, J.; Shin, H.; Jang, J. Li and Mg Co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 24028–24036.

[21]

Jia, S. Q.; Hu, M. L.; Gu, M.; Ma, J. R.; Li, D. P.; Xiang, G. H.; Liu, P.; Wang, K.; Servati, P.; Ge, W. K. et al. Optimizing ZnO-quantum dot interface with thiol as ligand modification for high-performance quantum dot light-emitting diodes. Small 2024, 20, 2307298.

[22]

Wang, Y. P.; Yang, Y. S.; Zhang, D. K.; Zhang, T.; Xie, S. Y.; Zhang, Y.; Zhao, Y. B.; Mi, X. Y.; Liu, X. L. Phosphorescent-dye-sensitized quantum-dot light-emitting diodes with 37% external quantum efficiency. Adv. Mater. 2023, 35, 2306703.

[23]

Rhee, S.; Chang, J. H.; Hahm, D.; Jeong, B. G.; Kim, J.; Lee, H.; Lim, J.; Hwang, E.; Kwak, J.; Bae, W. K. Tailoring the electronic landscape of quantum dot light-emitting diodes for high brightness and stable operation. ACS Nano 2020, 14, 17496–17504.

[24]

Li, Y.; Zhao, D. J.; Huang, W.; Jiao, Z. Q.; Wang, L.; Huang, Q. Y.; Wang, P.; Sun, M. N.; Yuan, G. C. Highly efficient quantum dot light-emitting diodes with the utilization of an organic emission layer. Nano Res. 2023, 16, 10545–10551.

[25]

Song, J. J.; Wang, O. Y.; Shen, H. B.; Lin, Q. L.; Li, Z. H.; Wang, L.; Zhang, X. T.; Li, L. S. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 2019, 29, 1808377.

[26]

Yu, R. M.; Yin, F. R.; Zhou, D. W.; Zhu, H. B.; Ji, W. Y. Efficient quantum-dot light-emitting diodes enabled via a charge manipulating structure. J. Phys. Chem. Lett. 2023, 14, 4548–4553.

[27]

Xu, M. P.; Chen, D. S.; Lin, J.; Lu, X. Y.; Deng, Y. Z.; He, S. Y.; Zhu, X. T.; Jin, W. X.; Jin, Y. Z. Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Res. 2022, 15, 7453–7459.

[28]

Lim, J.; Park, Y. S.; Wu, K. F.; Yun, H. J.; Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 2018, 18, 6645–6653.

[29]

Qu, X. W.; Ma, J. R.; Liu, P.; Wang, K.; Sun, X. W. On the voltage sweep behavior of quantum dot light-emitting diode. Nano Res. 2023, 16, 5511–5516.

[30]

Zhang, H. M.; Wang, F. F.; Kuang, Y. M.; Li, Z. H.; Lin, Q. L.; Shen, H. B.; Wang, H. Z.; Guo, L. J.; Li, L. S. Se/S ratio-dependent properties and application of gradient-alloyed CdSe1− x S x quantum dots: Shell-free structure, non-blinking photoluminescence with single-exponential decay, and efficient QLEDs. ACS Appl. Mater. Interfaces 2019, 11, 6238–6247.

[31]

Ali Deeb, M.; Ledig, J.; Wei, J. D.; Wang, X.; Wehmann, H. H.; Waag, A. Photo-assisted Kelvin probe force microscopy investigation of three dimensional GaN structures with various crystal facets, doping types, and wavelengths of illumination. J. Appl. Phys. 2017, 122, 085307.

[32]

Sun, X. X.; Wang, X. Q.; Liu, S. T.; Wang, P.; Wang, D.; Zheng, X. T.; Sang, L. W.; Sumiya, M.; Ueda, S.; Li, M. et al. Determination of the transition point from electron accumulation to depletion at the surface of In x Ga1− x N films. Appl. Phys Express 2018, 11, 021001.

[33]

Bonilla, R. S. Modelling of Kelvin probe surface voltage and photovoltage in dielectric-semiconductor interfaces. Mater. Res. Express 2022, 9, 085901.

[34]

Bodrozic, V.; Brown, T. M.; Mian, S.; Caruana, D.; Roberts, M.; Phillips, N.; Halls, J. J.; Grizzi, I.; Burroughes, J. H.; Cacialli, F. The built-in potential in blue polyfluorene-based light-emitting diodes. Adv. Mater. 2008, 20, 2410–2415.

[35]

Lee, T.; Kim, B. J.; Lee, H.; Hahm, D.; Bae, W. K.; Lim, J.; Kwak, J. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2106276.

[36]

Zhang, H.; Su, Q.; Chen, S. M. Suppressing Förster resonance energy transfer in close-packed quantum-dot thin film: Toward efficient quantum-dot light-emitting diodes with external quantum efficiency over 21.6%. Adv. Opt. Mater. 2020, 8, 1902092.

Nano Research
Cite this article:
Zhang D, Li J, Wang L, et al. Nanoshell-driven carrier engineering of large quantum dots enables ultra-stable and efficient LEDs. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6899-4
Topics:

221

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 May 2024
Revised: 04 July 2024
Accepted: 18 July 2024
Published: 16 August 2024
© Tsinghua University Press 2024
Return