AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient synthesis of IrPtPdNi/GO nanocatalysts for superior performance in water electrolysis

Sanha Jang1,§Young Hwa Yun2,§Jin Gyu Lee1Kyung Hee Oh1Shin Wook Kang1Jung-Il Yang1MinJoong Kim2,3Changsoo Lee2,3( )Ji Chan Park1,3( )
Clean Fuel Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
Hydrogen Research Department, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
Energy Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea

§ Sanha Jang and Young Hwa Yun contributed equally to this work.

Show Author Information

Graphical Abstract

A rapid synthesis method with a moving reactor was used to develop IrPtPdNi/graphene oxide (GO) nanocatalysts, which showed superior performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), offering new prospects in electrochemistry.

Abstract

Traditional iridium (Ir) oxide catalysts have faced significant limitations in water electrolysis, particularly under acidic conditions where instability and degradation severely restrict the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). To overcome these challenges, this study successfully synthesized highly dispersed IrPtPdNi alloy nanoparticles on a graphene oxide support using a vertically moving reactor, demonstrating exceptional performance in water electrolysis. These nanoparticles, synthesized via a fast-moving bed pyrolysis method, combine iridium, platinum, palladium, and nickel. They exhibit lower overpotentials in OER and comparable performance in HER to commercial catalysts, while also offering enhanced stability. These results surpass the limitations of traditional catalysts, marking significant progress toward more efficient and sustainable hydrogen production technologies. This advancement is expected to contribute significantly to the development of sustainable energy systems by innovatively enhancing the performance of catalysts in the electrochemical water-splitting process.

Electronic Supplementary Material

Video
6900_ESM2.mp4
Download File(s)
6900_ESM1.pdf (2.5 MB)

References

[1]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[2]

Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.

[3]

Shi, Z. P.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts. Nanoscale 2020, 12, 13249–13275.

[4]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, 2004243.

[5]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[6]

Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrO x electrocatalysts for oxygen evolution in acidic media. Chem 2019, 5, 445–459.

[7]

Cherevko, S.; Zeradjanin, A. R.; Topalov, A. A.; Kulyk, N.; Katsounaros, I.; Mayrhofer, K. J. J. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 2014, 6, 2219–2223.

[8]

Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.

[9]

Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 2014, 5, 2474–2478.

[10]

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

[11]

Zhang, Y. Q.; Wang, D. D.; Wang, S. Y. High-entropy alloys for electrocatalysis: Design, characterization, and applications. Small 2022, 18, 2104339.

[12]

Tajuddin, A. A. H.; Wakisaka, M.; Ohto, T.; Yu, Y.; Fukushima, H.; Tanimoto, H.; Li, X. G.; Misu, Y.; Jeong, S.; Fujita, J. I. et al. Corrosion-resistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media. Adv. Mater. 2023, 35, 2207466.

[13]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[14]

Esquius, J. R.; Liu, L. F. High entropy materials as emerging electrocatalysts for hydrogen production through low-temperature water electrolysis. Mater. Futures 2023, 2, 022102.

[15]

Zhang, L. L.; Lei, Y. T.; Xu, W. J.; Wang, D.; Zhao, Y. F.; Chen, W. X.; Xiang, X.; Pang, X. C.; Zhang, B.; Shang, H. S. Highly active and durable nitrogen-doped CoP/CeO2 nanowire heterostructures for overall water splitting. Chem. Eng. J. 2023, 460, 141119.

[16]

Lei, Y. T.; Zhang, L. L.; Xu, W. J.; Xiong, C. L.; Chen, W. X.; Xiang, X.; Zhang, B.; Shang, H. S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–6061.

[17]

Cai, Z. X.; Goou, H.; Ito, Y.; Tokunaga, T.; Miyauchi, M.; Abe, H.; Fujita, T. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 2021, 12, 11306–11315.

[18]

Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

[19]

Jahan, M.; Liu, Z. L.; Loh, K. P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372.

[20]

Zhang, S.; Rui, Y.; Zhang, X.; Sa, R. J.; Zhou, F.; Wang, R. H.; Li, X. J. Ultrafine cobalt-ruthenium alloy nanoparticles induced by confinement effect for upgrading hydrogen evolution reaction in all-pH range. Chem. Eng. J. 2021, 417, 128047.

[21]

Park, J. C.; Kim, A.; Jang, S.; Yang, J. I.; Kang, S. W.; Lee, C. W.; Kim, B. H.; Park, K. H. Facile synthesis of a high performance NiPd@CMK-3 nanocatalyst for mild Suzuki–Miyaura coupling reactions. ChemCatChem 2019, 11, 991–996.

[22]

Huo, W. Y.; Wang, S. Q.; Dominguez-Gutierrez, F. J.; Ren, K.; Kurpaska, Ł.; Fang, F.; Papanikolaou, S.; Kim, H. S.; Jiang, J. Q. High-entropy materials for electrocatalytic applications: A review of first principles modeling and simulations. Mater. Res. Lett. 2023, 11, 713–732.

[23]

Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

[24]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[25]

Waag, F.; Li, Y.; Ziefuß, A. R.; Bertin, E.; Kamp, M.; Duppel, V.; Marzun, G.; Kienle, L.; Barcikowski, S.; Gökce, B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019, 9, 18547–18558.

[26]

Kim, K. S.; Couillard, M.; Tang, Z. Q.; Shin, H.; Poitras, D.; Cheng, C. J.; Naboka, O.; Ruth, D.; Plunkett, M.; Chen, L. X. et al. Continuous synthesis of high-entropy alloy nanoparticles by in-flight alloying of elemental metals. Nat. Commun. 2024, 15, 1450.

[27]

Lee, H. K.; Kang, S. W.; Yang, J. I.; Chun, D. H.; Lee, J. H.; Oh, D.; Ban, J.; Jung, T.; Jung, H.; Park, J. C. A new systematic synthesis of ultimate nickel nanocatalysts for compact hydrogen generation. React. Chem. Eng. 2020, 5, 1218–1223.

[28]

Oh, K. H.; Lee, J. H.; Kim, K.; Lee, H. K.; Kang, S. W.; Yang, J. I.; Park, J. H.; Hong, C. S.; Kim, B. H.; Park, J. C. A new automated synthesis of a coke-resistant Cs-promoted Ni-supported nanocatalyst for sustainable dry reforming of methane. J. Mater. Chem. A 2023, 11, 1666–1675.

[29]

Oh, K. H.; Lee, H. K.; Kang, S. W.; Yang, J. I.; Nam, G.; Lim, T.; Lee, S. H.; Hong, C. S.; Park, J. C. Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts. J. Ind. Eng. Chem. 2022, 106, 449–459.

[30]

Wang, Z. F.; Wang, J. Q.; Li, Z. P.; Gong, P. W.; Ren, J. F.; Wang, H. G.; Han, X. X.; Yang, S. R. Cooperatively exfoliated fluorinated graphene with full-color emission. RSC Adv. 2012, 2, 11681–11686.

Nano Research
Pages 10208-10215
Cite this article:
Jang S, Yun YH, Lee JG, et al. Efficient synthesis of IrPtPdNi/GO nanocatalysts for superior performance in water electrolysis. Nano Research, 2024, 17(11): 10208-10215. https://doi.org/10.1007/s12274-024-6900-6
Topics:

308

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 May 2024
Revised: 10 July 2024
Accepted: 18 July 2024
Published: 08 August 2024
© Tsinghua University Press 2024
Return