AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Strategies for flame-retardant polymer electrolytes for safe lithium-based batteries

Xiao Ma§Yang Lu§Yu OuShuaishuai YanWenhui HouPan ZhouKai Liu( )
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

§ Xiao Ma and Yang Lu contributed equally to this work.

Show Author Information

Graphical Abstract

We provide a comprehensive overview and analysis of current flame-retardant polymer electrolyte strategies from the perspectives of flame-retardant additives and flame-retardant polymer matrix. Additionally, we provide insights into the future direction of their development.

Abstract

The advancement of lithium-based batteries has spurred anticipation for enhanced energy density, extended cycle life and reduced capacity degradation. However, these benefits are accompanied by potential risks, such as thermal runaway and explosions due to higher energy density. Currently, liquid organic electrolytes are the predominant choice for lithium batteries, despite their limitations in terms of mechanical strength and vulnerability to leakage. The development of polymer electrolytes, with their high Young’s modulus and enhanced safety features, offers a potential solution to the drawbacks of traditional liquid electrolytes. Despite these advantages, polymer electrolytes are still susceptible to burning and decomposition. To address this issue, researchers have conducted extensive studies to improve their flame-retardant properties from various perspectives. This review provides a concise overview of the thermal runaway mechanisms, flame-retardant mechanisms and electrochemical performance of polymer electrolytes. It also outlines the advancements in flame-retardant polymer electrolytes through the incorporation of various additives and the selection of inherently flame-retardant matrix. This review aims to offer a comprehensive understanding of flame-retardant polymer electrolytes and serve as a guide for future research in this field.

References

[1]

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

[2]

Zhang, H.; Li, C. M.; Eshetu, G. G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.; Mauger, A.; Guyomard, D.; Rojo, T. et al. From solid-solution electrodes and the rocking-chair concept to today’s batteries. Angew. Chem., Int. Ed. 2019, 59, 534–538.

[3]

Zhong, W.; Zeng, Z. Q.; Cheng, S. J.; Xie, J. Advancements in prelithiation technology: Transforming batteries from Li-shortage to Li-rich systems. Adv. Funct. Mater. 2024, 34, 2307860.

[4]

Zhang, Y. S.; Zhang, P.; Zhang, S. J.; Wang, Z.; Li, N.; Silva, S. R. P.; Shao, G. S. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790–803.

[5]

Zhang, Y. S.; Wu, Z. H.; Wang, S. B.; Li, N.; Silva, S. R. P.; Shao, G. S.; Zhang, P. Complex permittivity-dependent plasma confinement-assisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li-S full cells. InfoMat 2022, 4, e12294.

[6]

Hou, R. H.; Zhang, S. J.; Zhang, Y. S.; Li, N.; Wang, S. B.; Ding, B.; Shao, G. S.; Zhang, P. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200302.

[7]

Chen, H.; Yang, Y. F.; Boyle, D. T.; Jeong, Y. K.; Xu, R.; De Vasconcelos, L. S.; Huang, Z. J.; Wang, H. S.; Wang, H. X.; Huang, W. X. et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798.

[8]

Qiao, Y.; Yang, H. J.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662.

[9]

Liu, B.; Zhang, J. G.; Xu, W. Advancing lithium metal batteries. Joule 2018, 2, 833–845.

[10]

Liu, M.; Wang, C.; Cheng, Z.; Ganapathy, S.; Haverkate, L. A.; Unnikrishnan, S.; Wagemaker, M. Controlling the lithium-metal growth to enable low-lithium-metal-excess all-solid-state lithium-metal batteries. ACS Mater. Lett. 2020, 2, 665–670.

[11]

He, X. Z.; Ji, X.; Zhang, B.; Rodrigo, N. D.; Hou, S.; Gaskell, K.; Deng, T.; Wan, H. L.; Liu, S. F.; Xu, J. J. et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett. 2022, 7, 131–139.

[12]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

[13]

Cheng, M. R.; Su, H.; Xiong, P. X.; Zhao, X. X.; Xu, Y. H. Molten lithium-filled three-dimensional hollow carbon tube mats for stable lithium metal anodes. ACS Appl. Energy Mater. 2019, 2, 8303–8309.

[14]

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

[15]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[16]

Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Towards better Li metal anodes: Challenges and strategies. Mater. Today 2020, 33, 56–74.

[17]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[18]

Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

[19]

Arreaga-Salas, D. E.; Sra, A. K.; Roodenko, K.; Chabal, Y. J.; Hinkle, C. L. Progression of solid electrolyte interphase formation on hydrogenated amorphous silicon anodes for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 9072–9077.

[20]

Wang, Z. Y.; Shen, L.; Deng, S. G.; Cui, P.; Yao, X. Y. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 2021, 33, 2100353.

[21]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[22]

Zhang, Z.; Huang, Y.; Zhang, G. Z.; Chao, L. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries. Energy Storage Mater. 2021, 41, 631–641.

[23]

Liu, Y. L.; Xu, Y. L. Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem. Eng. J. 2022, 433, 134471.

[24]

Liu, Q.; Zhou, D.; Shanmukaraj, D.; Li, P.; Kang, F. Y.; Li, B. H.; Armand, M.; Wang, G. X. Self-healing janus interfaces for high-performance LAGP-based lithium metal batteries. ACS Energy Lett. 2020, 5, 1456–1464.

[25]

Zhang, L. W.; Liu, L.; Yang, S. Y.; Xie, Z. Q.; Zhang, F. Y.; Zhao, P. Experimental investigation on thermal runaway suspension with battery health retention. Appl. Therm. Eng. 2023, 225, 120239.

[26]

Li, Y.; Liu, X.; Wang, L.; Feng, X. N.; Ren, D. S.; Wu, Y.; Xu, G. L.; Lu, L. G.; Hou, J. X.; Zhang, W. F. et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy 2021, 85, 105878.

[27]

Karmakar, A.; Zhou, H. W.; Vishnugopi, B. S.; Mukherjee, P. P. Thermal runaway propagation analytics and crosstalk in lithium-ion battery modules. Energy Technol. 2024, 12, 2300707.

[28]

Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.

[29]

Chen, M. H.; Yue, Z. Y.; Wu, Y. X.; Wang, Y.; Li, Y.; Chen, Z. Thermal stable polymer-based solid electrolytes: Design strategies and corresponding stable mechanisms for solid-state Li metal batteries. Sustain. Mater. Technol. 2023, 36, e00587.

[30]

Wang, W. H.; Su, W.; Hu, S. Y.; Huang, Y.; Pan, Y.; Chang, S. C.; Shu, C. M. Pyrolysis characteristics and kinetics of polymethylmethacrylate-based polymer electrolytes for lithium-ion battery. J. Therm. Anal. Calorim. 2022, 147, 12019–12032.

[31]

Vishnugopi, B. S.; Hao, F.; Verma, A.; Mukherjee, P. P. Double-edged effect of temperature on lithium dendrites. ACS Appl. Mater. Interfaces 2020, 12, 23931–23938.

[32]

Liu, X.; Ren, D. S.; Hsu, H.; Feng, X. N.; Xu, G. L.; Zhuang, M. H.; Gao, H.; Lu, L. G.; Han, X. B.; Chu, Z. Y. et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2, 2047–2064.

[33]

Dong, T. T.; Zhang, S. H.; Ren, Z. Q.; Huang, L.; Xu, G. J.; Liu, T.; Wang, S. T.; Cui, G. L. Electrolyte engineering toward high performance high nickel (Ni ≥ 80%) lithium-ion batteries. Adv. Sci. 2024, 11, 2305753.

[34]

Hou, J. X.; Lu, L. G.; Wang, L.; Ohma, A.; Ren, D. S.; Feng, X. N.; Li, Y.; Li, Y. L.; Ootani, I.; Han, X. B. et al. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 2020, 11, 5100.

[35]

Wichman, I. S. Material flammability, combustion, toxicity and fire hazard in transportation. Prog. Energy Combust. Sci. 2003, 29, 247–299.

[36]

Chen, S. Y.; Wang, Z. X.; Zhao, H. L.; Qiao, H. W.; Luan, H. L.; Chen, L. Q. A novel flame retardant and film-forming electrolyte additive for lithium ion batteries. J. Power Sources 2009, 187, 229–232.

[37]

Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J. Electrochem. Soc. 2002, 149, A622.

[38]

Bai, L.; Ghiassinejad, S.; Brassinne, J.; Fu, Y.; Wang, J. D.; Yang, H.; Vlad, A.; Minoia, A.; Lazzaroni, R.; Gohy, J. F. High salt-content plasticized flame-retardant polymer electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 44844–44859.

[39]

Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548–1558.

[40]

Liu, S. M.; Ye, H.; Zhou, Y. S.; He, J. H.; Jiang, Z. J.; Zhao, J. Q.; Huang, X. B. Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FTIR. Polym. Degrad. Stab. 2006, 91, 1808–1814.

[41]

Huo, J. L.; Gao, X. P.; Yao, D. H.; Lu, C.; Liu, Y. Z.; Yang, Z. Y. Real-time char layer resistance monitoring for the study of expanded char layer morphology formed by IFR/SBS during combustion processes. Polym. Test. 2024, 132, 108385.

[42]

Takahashi, F. Fire blanket and intumescent coating materials for failure resistance. MRS Bull. 2021, 46, 429–434.

[43]

Liu, X.; Hao, J. W.; Gaan, S. Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Adv. 2016, 6, 74742–74756.

[44]
Tang, L.; Wang, G.; Wang, E. M.; Li, X. M.; Cheng, Q. The fire inhibition characteristics of composite inert gas and its application potential analysis. Energy Sources A: Recovery Util. Environ. Eff., in press, DOI: 10.1080/15567036.2021.1940387.
[45]

Tian, N. N.; Wen, X.; Jiang, Z. W.; Gong, J.; Wang, Y. H.; Xue, J.; Tang, T. Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene. Ind. Eng. Chem. Res. 2013, 52, 10905–10915.

[46]

Donmez Cavdar, A. Effect of various wood preservatives on limiting oxygen index levels of fir wood. Measurement 2014, 50, 279–284.

[47]

Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267.

[48]

Wu, X.; Jiang, G. L.; Zhang, Y.; Wu, L.; Jia, Y. J.; Tan, Y. Y.; Liu, J. G.; Zhang, X. M. Enhancement of flame retardancy of colorless and transparent semi-alicyclic polyimide film from hydrogenated-BPDA and 4,4’-oxydianiline via the incorporation of phosphazene oligomer. Polymers, 2020, 12, 90.

[49]

Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J. Power Sources 2007, 173, 562–564.

[50]

Lu, J. Z.; Zhou, J. H.; Chen, R. S.; Fang, F.; Nie, K. H.; Qi, W. B.; Zhang, J. N.; Yang, R. Z.; Yu, X. Q.; Li, H. et al. 4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Mater. 2020, 32, 191–198.

[51]

He, X. Z.; Zhao, C. P.; Hu, Z. W.; Restuccia, F.; Richter, F.; Wang, Q. S.; Rein, G. Heat transfer effects on accelerating rate calorimetry of the thermal runaway of lithium-ion batteries. Process Saf. Environ. Prot. 2022, 162, 684–693.

[52]

Townsend, D. I.; Tou, J. C. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim. Acta 1980, 37, 1–30.

[53]

Richard, M. N.; Dahn, J. R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte. J. Power Sources 1999, 79, 135–142.

[54]

Huang, J. S.; Jiang, Y. Y.; Li, J. C.; Huang, J. G.; Pu, K. Y. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging. Angew. Chem., Int. Ed. 2021, 60, 3999–4003.

[55]

Pu, S. R.; Pan, Y.; Zhang, L. C.; Lv, Y. Recent advances in chemiluminescence and cataluminescence for the detection of volatile sulfur compounds. Appl. Spectrosc. Rev. 2023, 58, 401–427.

[56]

Tao, Y.; Fan, D. M.; Yan, B. W.; Wu, Y. J.; Lian, H. Z.; Zhao, J. X.; Zhang, H. Chemiluminescence for rapid detection of free radicals in starch samples. Food Biosci. 2020, 36, 100667.

[57]

Deng, Y.; Huang, X. Y.; Zhu, H. H.; Zheng, X. K.; Gong, Z. J. Chemiluminescence amplification via enhanced generation of bisulfite radicals for determination of tributyl phosphate flame retardant. Microchem. J. 2023, 190, 108722.

[58]

Van Der Veen, I.; De Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153.

[59]

Zhang, P. P.; Zhao, Y. G.; Li, Y. K.; Li, N.; Silva, S. R. P.; Shao, G. S.; Zhang, P. Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium-sulfur battery. Adv. Sci. 2023, 10, 2206786.

[60]

Li, Y. K.; Wang, L.; Zhang, F.; Zhang, W. T.; Shao, G. S.; Zhang, P. Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS. Adv. Sci. 2023, 10, 2205020.

[61]

Wang, L.; Li, Y. K.; Ai, Y. Y.; Fan, E. C.; Zhang, F.; Zhang, W. T.; Shao, G. S.; Zhang, P. Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Adv. Funct. Mater. 2023, 33, 2306466.

[62]

Gauthier, M.; Fauteux, D.; Vassort, G.; Bélanger, A.; Duval, M.; Ricoux, P.; Chabagno, J. M.; Muller, D.; Rigaud, P.; Armand, M. B. et al. Assessment of polymer-electrolyte batteries for EV and ambient temperature applications. J. Electrochem. Soc. 1985, 132, 1333–1340.

[63]

Armand, M. The history of polymer electrolytes. Solid State Ionics 1994, 69, 309–319.

[64]

Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589.

[65]

Armand, M. B. Polymer electrolytes. Annu. Rev. Mater. Sci. 1986, 16, 245–261.

[66]

Lalia, B. S.; Fujita, T.; Yoshimoto, N.; Egashira, M.; Morita, M. Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate. J. Power Sources 2009, 186, 211–215.

[67]

Yoshimoto, N.; Gotoh, D.; Egashira, M.; Morita, M. Alkylphosphate-based nonflammable gel electrolyte for LiMn2O4 positive electrode in lithium-ion battery. J. Power Sources 2008, 185, 1425–1428.

[68]

Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Possible use of non-flammable phosphonate ethers as pure electrolyte solvent for lithium batteries. J. Power Sources 2008, 177, 194–198.

[69]

Zhao, J. W.; Li, M. J.; Su, H.; Liu, Y. S.; Bai, P. X.; Liu, H.; Ma, L. H.; Li, W. Y.; Sun, J.; Xu, Y. H. In situ fabricated non-flammable quasi-solid electrolytes for Li-metal batteries. Small Methods 2023, 7, 2300228.

[70]

Wang, X. M.; Yasukawa, E.; Kasuya, S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties. J. Electrochem. Soc. 2001, 148, A1058.

[71]

Zhou, G. D.; Lin, X. D.; Liu, J. P.; Yu, J.; Wu, J. X.; Law, H. M.; Wang, Z.; Ciucci, F. In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices. Energy Storage Mater. 2021, 34, 629–639.

[72]

Li, Z.; Weng, S. T.; Fu, J. L.; Wang, X. X.; Zhou, X. Y.; Zhang, Q. H.; Wang, X. F.; Wei, L.; Guo, X. Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Mater. 2022, 47, 542–550.

[73]

Pires, J.; Castets, A.; Timperman, L.; Santos-Peña, J.; Dumont, E.; Levasseur, S.; Tessier, C.; Dedryvère, R.; Anouti, M. Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J. Power Sources 2015, 296, 413–425.

[74]

Wu, B. B.; Pei, F.; Wu, Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries. J. Power Sources 2013, 227, 106–110.

[75]

Chen, Y. B.; Wang, Y. X.; Li, Z.; Wang, D. D.; Yuan, H.; Zhang, H. Z.; Tan, Y. Q. A flame retarded polymer-based composite solid electrolyte improved by natural polysaccharides. Compos. Commun. 2021, 26, 100774.

[76]

Liu, X. Q.; Zhang, C.; Gao, S. Y.; Cai, S. J.; Wang, Q. F.; Liu, J. Y.; Liu, Z. H. A novel polyphosphonate flame-retardant additive towards safety-reinforced all-solid-state polymer electrolyte. Mater. Chem. Phys. 2020, 239, 122014.

[77]

Liu, Y. Y.; Han, L. F.; Liao, C.; Yu, H.; Kan, Y. C.; Hu, Y. Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries. Chem. Eng. J. 2023, 468, 143222.

[78]

Han, L. F.; Liu, Y. Y.; Liao, C.; Zhao, Y. H.; Cao, Y. K.; Kan, Y. C.; Zhu, J. X.; Hu, Y. Noncombustible 7 µm-thick solid polymer electrolyte for highly energy density solid state lithium batteries. Nano Energy 2023, 112, 108448.

[79]

Liang, J. Y.; Zhang, X. D.; Zhang, Y.; Huang, L. B.; Yan, M.; Shen, Z. Z.; Wen, R.; Tang, J. L.; Wang, F. Y.; Shi, J. L. et al. Cooperative shielding of Bi-electrodes via in situ amorphous electrode-electrolyte interphases for practical high-energy lithium-metal batteries. J. Am. Chem. Soc. 2021, 143, 16768–16776.

[80]

Li, M. J.; Yang, J. X.; Shi, Y. Q.; Chen, Z. F.; Bai, P. X.; Su, H.; Xiong, P. X.; Cheng, M. R.; Zhao, J. W.; Xu, Y. H. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries. Adv. Mater. 2022, 34, 2107226.

[81]

Wang, S. S.; Zhou, L.; Tufail, M. K.; Yang, L.; Zhai, P. F.; Chen, R. J.; Yang, W. In-situ synthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries. Chem. Eng. J. 2021, 415, 128846.

[82]

Tan, S. J.; Yue, J. P.; Tian, Y. F.; Ma, Q.; Wan, J.; Xiao, Y.; Zhang, J.; Yin, Y. X.; Wen, R.; Xin, S. et al. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Mater. 2021, 39, 186–193.

[83]

El Ouatani, L.; Dedryvère, R.; Siret, C.; Biensan, P.; Gonbeau, D. Effect of vinylene carbonate additive in Li-ion batteries: Comparison of LiCoO2/C, LiFePO4/C, and LiCoO2/Li4Ti5O12 systems. J. Electrochem. Soc. 2009, 156, A468.

[84]

Ramani, A.; Dahoe, A. E. On the performance and mechanism of brominated and halogen free flame retardants in formulations of glass fibre reinforced poly(butylene terephthalate). Polym. Degrad. Stab. 2014, 104, 71–86.

[85]

Altarawneh, M.; Saeed, A.; Al-Harahsheh, M.; Dlugogorski, B. Z. Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Prog. Energy Combust. Sci. 2019, 70, 212–259.

[86]

Zhou, H. Y.; Yan, S. S.; Li, J.; Dong, H.; Zhou, P.; Wan, L.; Chen, X. X.; Zhang, W. L.; Xia, Y. C.; Wang, P. C. et al. Lithium bromide-induced organic-rich cathode/electrolyte interphase for high-voltage and flame-retardant all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2022, 14, 24469–24479.

[87]
Charette, A. B.; Barbay, J. K.; He, W. Lithium bromide. In Encyclopedia of Reagents for Organic Synthesis (EROS). John Wiley & Sons, Ltd.: Hoboken, 2006.
[88]

Tasker, P. W. The surface energies, surface tensions and surface structure of the alkali halide crystals. Philos. Mag. A 1979, 39, 119–136.

[89]

Cui, Y.; Wan, J. Y.; Ye, Y. S.; Liu, K.; Chou, L. Y.; Cui, Y. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 2020, 20, 1686–1692.

[90]

Yee, M.; An, K.; Nguyen, D. T.; Yun, H. W.; Park, J.; Suk, J.; Song, S. W. Confining nonflammable liquid in solid polymer electrolyte to enable nickel-rich cathode-based 4.2 V high-energy solid-state lithium-metal and lithium-ion batteries. Mater. Today Energy 2022, 24, 100950.

[91]

Pham, H. Q.; Hwang, E. H.; Kwon, Y. G.; Song, S. W. Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates. Chem. Commun. 2019, 55, 1256–1258.

[92]

Pham, H. Q.; Thi Tran, Y. H.; Han, J.; Song, S. W. Roles of nonflammable organic liquid electrolyte in stabilizing the interface of the LiNi0.8Co0.1Mn0.1O2 Cathode at 4.5 V and improving the battery performance. J. Phys. Chem. C 2020, 124, 175–185.

[93]

Pham, H. Q.; Lee, H. Y.; Hwang, E. H.; Kwon, Y. G.; Song, S. W. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. J. Power Sources 2018, 404, 13–19.

[94]

Xiang, J. W.; Zhang, Y.; Zhang, B.; Yuan, L. X.; Liu, X. T.; Cheng, Z. X.; Yang, Y.; Zhang, X. X.; Li, Z.; Shen, Y. et al. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 2021, 14, 3510–3521.

[95]

Yang, X. Y.; Liu, J. X.; Pei, N. B.; Chen, Z. Q.; Li, R. Y.; Fu, L. J.; Zhang, P.; Zhao, J. B. The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 2023, 15, 74.

[96]

Li, J.; Jing, M. X.; Li, R.; Li, L. X.; Huang, Z. H.; Yang, H.; Liu, M. Q.; Hussain, S.; Xiang, J.; Shen, X. Q. Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries. ACS Appl. Polym. Mater. 2022, 4, 7144–7151.

[97]

Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 2023, 35, 2110423.

[98]

Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R: Rep. 2019, 136, 27–46.

[99]

Lv, Q.; Song, Y. J.; Wang, B.; Wang, S. J.; Wu, B. C.; Jing, Y. T.; Ren, H. Z.; Yang, S. B.; Wang, L.; Xiao, L. H. et al. Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries. J. Energy Chem. 2023, 81, 613–622.

[100]

Zhao, X. M.; Wu, Z. H.; Zhang, Z. H.; Wang, N.; Tao, C. A.; Wang, J. F.; Gong, H. The polymer composite electrolyte with polyethylene oxide-grafted graphene oxide as fillers toward stable highcurrent density lithium metal anodes. Mater. Res. Express 2021, 8, 105305.

[101]

Fan, L. D.; Yu, L. W.; Xu, F.; Qin, G.; Chen, Q. Preparation of PVA-based composite alkaline solid polymer electrolyte with La2O3 nanoparticle filler. J. Nanopart. Res. 2021, 23, 235.

[102]

Zhou, T. C.; Shao, R.; Chen, S.; He, X. M.; Qiao, J. L.; Zhang, J. J. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J. Power Sources 2015, 293, 946–975.

[103]

Liu, W.; Lin, D. C.; Sun, J.; Zhou, G. M.; Cui, Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 2016, 10, 11407–11413.

[104]

Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.

[105]

Wang, H. Y.; Zhang, S. S.; Zhu, M.; Sui, G.; Yang, X. P. Remarkable heat-resistant halloysite nanotube/polyetherimide composite nanofiber membranes for high performance gel polymer electrolyte in lithium ion batteries. J. Electroanal. Chem. 2018, 808, 303–310.

[106]

Zhu, M.; Lan, J. L.; Tan, C. Y.; Sui, G.; Yang, X. P. Degradable cellulose acetate/poly-L-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J. Mater. Chem. A 2016, 4, 12136–12143.

[107]

Tang, W. J.; Tang, S.; Guan, X. Z.; Zhang, X. Y.; Xiang, Q.; Luo, J. Y. High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 2019, 29, 1900648.

[108]

Fu, K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y. N.; Yan, C. Y. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.

[109]

Zhang, D. Y.; Li, L. A.; Wu, X. C.; Wang, J.; Li, Q. K.; Pan, K. M.; He, J. L. Research progress and application of peo-based solid state polymer composite electrolytes. Front. Energy Res. 2021, 9, 726738.

[110]

Gachot, G.; Grugeon, S.; Eshetu, G. G.; Mathiron, D.; Ribière, P.; Armand, M.; Laruelle, S. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis. Electrochim. Acta 2012, 83, 402–409.

[111]

Maleki, H.; Deng, G. P.; Kerzhner‐Haller, I.; Anani, A.; Howard, J. N. Thermal stability studies of binder materials in anodes for lithium‐ion batteries. J. Electrochem. Soc. 2000, 147, 4470.

[112]

Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.

[113]

Zhang, Q. H.; Huang, H.; Liu, T. M.; Wang, Y.; Yu, J. R.; Hu, Z. M. Molecular composite electrolytes of polybenzimidazole/polyethylene oxide with enhanced safety and comprehensive performance for all-solid-state lithium ion batteries. Polymer 2022, 239, 124450.

[114]

Zhang, H. M.; Chen, J. H.; Liu, J. Q.; Zhang, X.; Yang, J.; Nuli, Y.; Ma, H. Y.; Wang, J. L. Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery. Energy Storage Mater. 2023, 61, 102885.

[115]

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

[116]

Lin, W. T.; Liu, J. P.; Xue, L. C.; Li, Y. Q.; Yu, H. Z.; Xiong, Y. Q.; Chen, D. J.; Ciucci, F.; Yu, J. Nonflammable, robust and flexible electrolytes enabled by phosphate coupled polymer-polymer for Li-metal batteries. J. Colloid Interface Sci. 2022, 621, 222–231.

[117]

Li, Y. Y.; Chen, S. F.; Han, X.; Li, F. Q.; Liu, Q.; Hou, Y.; Lu, J. G.; Ren, Y. Y.; Zhan, X. L.; Zhang, Q. H. Polyimide/ionic crystal-based hybrid electrolyte for a self-powered multistage fire alarm. ACS Appl. Polym. Mater. 2023, 5, 1293–1301.

[118]

Zhou, D.; He, Y. B.; Liu, R. L.; Liu, M.; Du, H. D.; Li, B. H.; Cai, Q.; Yang, Q. H.; Kang, F. Y. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv Energy Mater 2015, 5, 1500353.

[119]

Oikawa, E.; Kambara, S. Polymerization of saturated nitriles with metal chlorides. J. Polym. Sci. B: Polym. Lett. 1964, 2, 649–653.

[120]

Liu, J.; Shen, X. W.; Zhou, J. Q.; Wang, M. F.; Niu, C. Q.; Qian, T.; Yan, C. L. Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery. ACS Appl. Mater. Interfaces 2019, 11, 45048–45056.

[121]

You, Y.; Manthiram, A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv Energy Mater 2018, 8, 1701785.

[122]

Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

[123]

Zhang, Z. C.; Hu, L. B.; Wu, H. M.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 2013, 6, 1806–1810.

[124]

Hu, A. J.; Chen, W.; Li, F.; He, M.; Chen, D. J.; Li, Y. Y.; Zhu, J.; Yan, Y. C.; Long, J. P.; Hu, Y. et al. Nonflammable polyfluorides-anchored quasi-solid electrolytes for ultra-safe anode-free lithium pouch cells without thermal runaway. Adv. Mater. 2023, 35, 2304762.

[125]

Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975.

[126]

Cai, M. L.; Jin, J.; Xiu, T.; Song, Z.; Badding, M. E.; Wen, Z. Y. In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface. Energy Storage Mater. 2022, 47, 61–69.

[127]

Huang, Y. F.; Gu, T.; Rui, G. C.; Shi, P. R.; Fu, W. B.; Chen, L.; Liu, X. T.; Zeng, J. P.; Kang, B. H.; Yan, Z. C. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 2021, 14, 6021–6029.

[128]

Wen, K. H.; Tan, X.; Chen, T. H.; Chen, S. M.; Zhang, S. J. Fast Li-ion transport and uniform Li-ion flux enabled by a double-layered polymer electrolyte for high performance Li metal battery. Energy Storage Mater. 2020, 32, 55–64.

[129]

Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088.

[130]

Bao, C. S.; Zheng, C. J.; Wu, M. F.; Zhang, Y.; Jin, J.; Chen, H.; Wen, Z. Y. 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater. 2023, 13, 2204028.

[131]

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

[132]

Lin, D. C.; Yuen, P. Y.; Liu, Y. Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 2018, 30, 1802661.

[133]

Zhou, B. H.; Yang, M. L.; Zuo, C.; Chen, G.; He, D.; Zhou, X. P.; Liu, C. M.; Xie, X. L.; Xue, Z. G. Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries. ACS Macro Lett. 2020, 9, 525–532.

[134]

Zuo, C.; Yang, M. L.; Wang, Z. J.; Jiang, K.; Li, S. B.; Luo, W.; He, D.; Liu, C. M.; Xie, X. L.; Xue, Z. G. Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy-amine reaction for high-performance all-solid-state lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18871–18879.

[135]

Liu, W. S.; Zhou, R.; Goh, H. L. S.; Huang, S.; Lu, X. H. From waste to functional additive: Toughening epoxy resin with lignin. ACS Appl. Mater. Interfaces 2014, 6, 5810–5817.

[136]

Long, M. C.; Wang, T.; Duan, P. H.; Gao, Y.; Wang, X. L.; Wu, G.; Wang, Y. Z. Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery. J. Energy Chem. 2022, 65, 9–18.

[137]

Jia, H.; Onishi, H.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. Intrinsically safe gel polymer electrolyte comprising flame-retarding polymer matrix for lithium ion battery application. ACS Appl. Mater. Interfaces 2018, 10, 42348–42355.

[138]

Wu, L.; Pei, F.; Cheng, D. M.; Zhang, Y.; Cheng, H.; Huang, K.; Yuan, L. X.; Li, Z.; Xu, H. H.; Huang, Y. H. Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2310084.

[139]

Hou, C. C.; Wang, H. F.; Li, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.

[140]

Shi, Y. X.; Zhu, B. B.; Guo, X. T.; Li, W. T.; Ma, W. Z.; Wu, X. Y.; Pang, H. MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Mater. 2022, 51, 840–872.

[141]

Liu, X. B.; Li, W. X.; Zhao, X. D.; Liu, Y. C.; Nan, C. W.; Fan, L. Z. Two birds with one stone: Metal-organic framework derived micro-/nanostructured Ni2P/Ni hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv. Funct. Mater. 2019, 29, 1901510.

[142]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[143]

Hou, Y. B.; Hu, W. Z.; Gui, Z.; Hu, Y. A novel Co(Ⅱ)-based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017, 152, 231–242.

[144]

Ouyang, Y.; Gong, W.; Zhang, Q.; Wang, J.; Guo, S. J.; Xiao, Y. B.; Li, D. X.; Wang, C. H.; Sun, X. L.; Wang, C. Y. et al. Bilayer zwitterionic metal-organic framework for selective all-solid-state superionic conduction in lithium metal batteries. Adv. Mater. 2023, 35, 2304685.

[145]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[146]

Han, X.; Yuan, C.; Hou, B.; Liu, L. J.; Li, H. Y.; Liu, Y.; Cui, Y. Chiral covalent organic frameworks: Design, synthesis and property. Chem. Soc. Rev. 2020, 49, 6248–6272.

[147]

Liu, J.; Yang, T.; Wang, Z. P.; Wang, P. L.; Feng, J.; Ding, S. Y.; Wang, W. Pyrimidazole-based covalent organic frameworks: Integrating functionality and ultrastability via isocyanide chemistry. J. Am. Chem. Soc. 2020, 142, 20956–20961.

[148]

Liu, Y.; Zhou, W. Q.; Teo, W. L.; Wang, K.; Zhang, L. Y.; Zeng, Y. F.; Zhao, Y. L. Covalent-organic-framework-based composite materials. Chem 2020, 6, 3172–3202.

[149]

Castano, I.; Evans, A. M.; Li, H. Y.; Vitaku, E.; Strauss, M. J.; Brédas, J. L.; Gianneschi, N. C.; Dichtel, W. R. Chemical control over nucleation and anisotropic growth of two-dimensional covalent organic frameworks. ACS Cent. Sci. 2019, 5, 1892–1899.

[150]

Jiang, S. Y.; Gan, S. X.; Zhang, X.; Li, H.; Qi, Q. Y.; Cui, F. Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 2019, 141, 14981–14986.

[151]

He, X. Y.; Yang, Y.; Wu, H.; He, G. W.; Xu, Z. X.; Kong, Y.; Cao, L.; Shi, B. B.; Zhang, Z. J.; Tongsh, C. et al. De novo design of covalent organic framework membranes toward ultrafast anion transport. Adv. Mater. 2020, 32, 2001284.

[152]

Kandambeth, S.; Dey, K.; Banerjee, R. Covalent organic frameworks: Chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807–1822.

[153]

Su, Y.; Wan, Y. J.; Xu, H.; Otake, K. I.; Tang, X. H.; Huang, L. B.; Kitagawa, S.; Gu, C. Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions. J. Am. Chem. Soc. 2020, 142, 13316–13321.

[154]

Wang, Z. F.; Zhang, Y. S.; Zhang, P. H.; Yan, D.; Liu, J. J.; Chen, Y.; Liu, Q.; Cheng, P.; Zaworotko, M. J.; Zhang, Z. J. Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte. eScience 2022, 2, 311–318.

[155]

Han, L. F.; Wang, L.; Chen, Z. H.; Kan, Y. C.; Hu, Y.; Zhang, H.; He, X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review. Adv. Funct. Mater. 2023, 33, 2300892.

[156]

Liu, M. C.; Zeng, Z. Q.; Wu, Y. K.; Zhong, W.; Lei, S.; Cheng, S. J.; Wen, J. Y.; Xie, J. Reviewing recent progress of liquid electrolyte chemistry for mitigating thermal runaway in lithium-ion batteries. Energy Storage Mater. 2024, 65, 103133.

[157]

Ye, Z.; Li, J. Y.; Li, Z. J. Recent progress in nonflammable electrolytes and cell design for safe Li-ion batteries. J. Mater. Chem. A 2023, 11, 15576–15599.

Nano Research
Pages 8754-8771
Cite this article:
Ma X, Lu Y, Ou Y, et al. Strategies for flame-retardant polymer electrolytes for safe lithium-based batteries. Nano Research, 2024, 17(10): 8754-8771. https://doi.org/10.1007/s12274-024-6902-4
Topics:
Part of a topical collection:

557

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 22 April 2024
Revised: 29 June 2024
Accepted: 21 July 2024
Published: 22 August 2024
© Tsinghua University Press 2024
Return