AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A palm-like 3D tactile sensor based on liquid-metal triboelectric nanogenerator for underwater robot gripper

Yuanzheng Li1Bo Liu1Peng Xu2( )Jianhua Liu1Xirui Dai1Aiqiang Yu1Tianrun Wang1Linan Guo1Tangzhen Guan3Liguo Song1( )Minyi Xu1( )
Dalian Key Lab of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China
Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China
Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

This paper proposes a distributed liquid metal-based three-dimensional biomimetic underwater triboelectric palm-like tactile sensor (UPTS) for feedback-controlled grippers. The sensor can precisely detect the position and angle of external pressure, as well as the shape and hardness of the object being grasped, while maintaining a stable output signal.

Abstract

The highly sensitive and power efficient tactile sensors can provide grippers with vertical and shear forces from interactions with objects. In an ocean environment with low visual distance and high noise, sea otters can rely on their palms to accurately identify and grasp target objects without damage. Inspired by the structure of the sea otter’s palm, this paper proposes a distributed liquid metal-based three-dimensional biomimetic underwater triboelectric palm-like tactile sensor (UPTS) for feedback-controlled grippers. The device is mainly composed of a flexible shell, a flexible cover, a flexible support, a triboelectric sensing unit and a fixed shell. The force acting on the flexible cover causes the flexible cover and sensing unit to deform, so that the sensing unit undergoes a contact-separation process, thereby generating an electrical signal. UPTS has the capability to identify the magnitude and direction of force, with a direction recognition error angle within 5 degrees. Additionally, it can distinguish the hardness and shape of objects, achieving an accuracy rate of 100% and 99.75% respectively for the tested objects. The results indicate that UPTS can provide force feedback for underwater grippers, thereby assisting the grippers in better completing salvage task.

Electronic Supplementary Material

Video
6903_ESM2.mp4
6903_ESM3.mp4
6903_ESM4.mp4
Download File(s)
6903_ESM1.pdf (3.1 MB)

References

[1]
Carbajal, J. P.; Bayma, R.; Ziegler, M.; Lang, Z. Q. Modeling and frequency domain analysis of nonlinear compliant joints for a passive dynamic swimmer. 2011, arXiv:1108.3206. arXiv.org e-Print archive. https://arxiv.org/abs/1108.3206 (accessed Sep 10, 2023).
[2]

Li, Y. L.; Liu, W. D.; Li, L.; Zhang, W. B.; Xu, J. M.; Jiao, H. F. Vision-based target detection and positioning approach for underwater robots. IEEE Photonics J. 2022, 15, 8000112.

[3]
Mazumdar, A.; Lozano, M.; Fittery, A.; Asada, H. H. A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems. In 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 2012, pp 2818–2823.
[4]

Ma, Y. L.; Huang, Q. G.; Pan, G.; Gao, P. C. Investigation of the hydrodynamic characteristics of two manta rays tandem gliding. J. Mar. Sci. Eng. 2022, 10, 1186.

[5]
Var, S. C. S.; Jovanova, J. Design of a soft underwater gripper with SMA actuation. In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Austin, Texas, USA, 2023, pp V001T06A013.
[6]
Liang, X. Q.; Wang, Y. Z.; Xie, Z.; Ocak, S. M. A vacuum-powered soft mesh gripper for compliant and effective grasping. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, Singapore, 2023, pp 1–7.
[7]

Romanov, A. M.; Gyrichidi, N.; Romanov, M. P. A novel gripper with integrated rotary unit and force control for pick and place applications. Robotics 2022, 11, 155.

[8]

Li, H. L.; Li, X. Z.; Wang, B.; Shang, X. Y.; Yao, J. T. A fault-tolerant soft swallowing robot capable of grasping delicate structures underwater. IEEE Robot. Autom. Lett. 2023, 8, 3302–3309.

[9]

Herrero-Pérez, D.; Martínez-Barberá, H. Soft gripper design and fabrication for underwater grasping. Appl. Sci. 2022, 12, 10694.

[10]
Sullivan, K.; Chizeck, H.; Marburg, A. Using a rigid gripper on objects of different compliance underwater. In OCEANS 2022, Hampton Roads, Hampton Roads, VA, USA, 2022, pp 1–4.
[11]

Wu, M. X.; Zheng, X. W.; Liu, R. S.; Hou, N. Z.; Afridi, W. H.; Afridi, R. H.; Guo, X.; Wu, J. N.; Wang, C.; Xie, G. M. Glowing sucker octopus ( Stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing. Adv. Sci. 2022, 9, 2104382.

[12]

Niesterok, B.; Krüger, Y.; Wieskotten, S.; Dehnhardt, G.; Hanke, W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals ( Phoca vitulina). J. Exp. Biol. 2017, 220, 174–185.

[13]
VanBlaricom, G. R.; Estes, J. A. The Community Ecology of Sea Otters; Springer: Berlin, 2012.
[14]

Strobel, S. M.; Sills, J. M.; Tinker, M. T.; Reichmuth, C. J. Active touch in sea otters: In-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. J. Exp. Biol. 2018, 221, jeb181347.

[15]

Ma, Z. Z.; Zhang, C. J.; Jiao, P. C. Underwater smart glasses: A visual-tactile fusion hazard detection system. iScience 2024, 27, 109479.

[16]

Subad, R. A. S. I.; Cross, L. B.; Park, K. Soft robotic hands and tactile sensors for underwater robotics. Appl. Mech. 2021, 2, 356–382.

[17]

Xu, P.; Zheng, J. X.; Liu, J. H.; Liu, X. Y.; Wang, X. Y.; Wang, S. Y.; Guan, T. Z.; Fu, X. P.; Xu, M. Y.; Xie, G. M. et al. Deep-learning-assisted underwater 3D tactile tensegrity. Research 2023, 6, 0062.

[18]

Zhang, J. J.; Liu, W. D.; Gao, L. E.; Zhang, Y. W.; Tang, W. J. Design, analysis and experiment of a tactile force sensor for underwater dexterous hand intelligent grasping. Sensors 2018, 18, 2427.

[19]

Xu, P.; Liu, J. H.; Liu, X. Y.; Wang, X. Y.; Zheng, J. X.; Wang, S. Y.; Chen, T. Y.; Wang, H.; Wang, C.; Fu, X. P. et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. npj Flex. Electron. 2022, 6, 25.

[20]

Barkas, D. A.; Psomopoulos, C. S.; Papageorgas, P.; Kalkanis, K.; Piromalis, D.; Mouratidis, A. Sustainable energy harvesting through triboelectric nano-generators: A review of current status and applications. Energy Procedia 2019, 157, 999–1010.

[21]

Chen, H. M.; Xu, Y.; Bai, L.; Li, J.; Li, T.; Zhao, C.; Zhang, J. S.; Song, G. F. Optimization of contact-mode triboelectric nanogeneration for high energy conversion efficiency. Sci. China Inf. Sci. 2018, 61, 060416.

[22]

Dharmasena, R. D. I. G.; Silva, S. R. P. Towards optimized triboelectric nanogenerators. Nano Energy 2019, 62, 530–549.

[23]

Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.

[24]

Yoo, D.; Lee, S.; Lee, J. W.; Lee, K.; Go, E. Y.; Hwang, W.; Song, I.; Cho, S. B.; Kim, D. W.; Choi, D. et al. Reliable DC voltage generation based on the enhanced performance triboelectric nanogenerator fabricated by nanoimprinting-poling process and an optimized high efficiency integrated circuit. Nano Energy 2020, 69, 104388.

[25]

Liang, S. T.; Li, J.; Li, F. J.; Hu, L.; Chen, W.; Yang, C. Flexible tactile sensing microfibers based on liquid metals. ACS Omega 2022, 7, 12891–12899.

[26]

Qi, X. J.; Zhao, H. T.; Wang, L. H.; Sun, F. Q.; Ye, X. R.; Zhang, X. J.; Tian, M. W.; Qu, L. J. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J. 2022, 437, 135382.

[27]

Chen, S.; Wang, H. Z.; Zhao, R. Q.; Rao, W.; Liu, J. Liquid metal composites. Matter 2020, 2, 1446–1480.

[28]

Jung, T.; Yang, S. N. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors 2015, 15, 11823–11835.

[29]

Kim, H.; Boysen, D. A.; Newhouse, J. M.; Spatocco, B. L.; Chung, B.; Burke, P. J.; Bradwell, D. J.; Jiang, K.; Tomaszowska, A. A.; Wang, K. L. et al. Liquid metal batteries: Past, present, and future. Chem. Rev. 2013, 113, 2075–2099.

[30]

Guthrie, R.; Isac, M. In-situ sensors for liquid metal quality. High Temp. Mater. Processes 2012, 31, 633–643.

[31]

Mokhtari, M.; Wada, T.; Le Bourlot, C.; Duchet-Rumeau, J.; Kato, H.; Maire, E.; Mary, N. Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800. Corros. Sci. 2020, 166, 108468.

[32]

Pan, M.; Yuan, C. G.; Liang, X. R.; Zou, J.; Zhang, Y.; Bowen, C. Triboelectric and piezoelectric nanogenerators for future soft robots and machines. iScience 2020, 23, 101682.

[33]

Park, J.; Kim, I.; Yun, J.; Kim, D. Liquid-metal embedded sponge-typed triboelectric nanogenerator for omnidirectionally detectable self-powered motion sensor. Nano Energy 2021, 89, 106442.

[34]

Zeng, J. H.; Zhao, J. Q.; Li, C. X.; Qi, Y. C.; Liu, G. X.; Fu, X. P.; Zhou, H.; Zhang, C. Triboelectric nanogenerators as active tactile stimulators for multifunctional sensing and artificial synapses. Sensors 2022, 22, 975.

[35]

Zhang, B. S.; Jiang, Y. C.; Chen, B. J.; Li, H. D.; Mao, Y. C. Recent progress of bioinspired triboelectric nanogenerators for electronic skins and human–machine interaction. Nanoenergy Adv. 2024, 4, 45–69.

[36]

Lee, G.; Son, J.; Kim, D.; Ko, H. J.; Lee, S. G.; Cho, K. Crocodile-skin-inspired omnidirectionally stretchable pressure sensor. Small 2022, 18, 2205643.

Nano Research
Pages 10008-10016
Cite this article:
Li Y, Liu B, Xu P, et al. A palm-like 3D tactile sensor based on liquid-metal triboelectric nanogenerator for underwater robot gripper. Nano Research, 2024, 17(11): 10008-10016. https://doi.org/10.1007/s12274-024-6903-3
Topics:

486

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 May 2024
Revised: 19 July 2024
Accepted: 21 July 2024
Published: 17 August 2024
© Tsinghua University Press 2024
Return