AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Efficient electrical control of magnetization switching and ferromagnetic resonance in flexible La0.7Sr0.3MnO3 films

Qin Du1Wenli Wang1Xiao Sun2Jingen Wu1Zhongqiang Hu1Bing Tian3Qiancheng Lv3Zhiguang Wang1( )Ming Liu1
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
John de Laeter Centre, Curtin University, Western Australia, 6102, Australia
Southern Power Grid Digital Grid Research Institute Co., Ltd., Guangzhou 510700, China
Show Author Information

Graphical Abstract

Abstract

Efficient electrical control of magnetic property is critical for the development of various spintronics. However, traditional magnetoelectric devices require adoption of piezoelectric component, resulting in complicated device architecture and complex conditioning circuit. More importantly, traditional strain-mediated magnetoelectric structures could not be developed in flexible form due to the existence of magnetostrictive component, which could be easily affected by mechanical deformation in flexible devices. Here we have systematically investigated pure current control of the magnetic properties of La0.7Sr0.3MnO3 thin films. Ferromagnetic to paramagnetic phase transition has been realized with a small current density of 5.2 × 103 A/cm2, which is three orders smaller than the working current density of spintronics based on spin-orbit torque and spin-transfer torque. The effective tuning of magnetic property has been attributed to the current induced Joule heating effect. For La0.7Sr0.3MnO3 film grown on flexible Mica with a smaller thermal conductivity, dramatic change of ferromagnetic resonance field of 1340 Oe and nonvolatile magnetization switching have been achieved with an ultra-small current density of 7.4 × 102 A/cm2. These results represent a crucial step towards effective electrical control of both static and dynamic magnetic properties in flexible magnetic thin films and open a new avenue for exploring electrical controlled flexible spintronics.

References

[1]

Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I. L.; Diény, B.; Pirro, P.; Hillebrands, B. Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020, 509, 166711.

[2]

Guo, Z. X.; Yin, J. L.; Bai, Y.; Zhu, D. Q.; Shi, K. W.; Wang, G. F.; Cao, K. H.; Zhao, W. S. Spintronics for energy-efficient computing: An overview and outlook. Proc. IEEE 2021, 109, 1398–1417.

[3]

Zhou, J.; Chen, J. S. Prospect of spintronics in neuromorphic computing. Adv. Electron. Mater. 2021, 7, 2100465.

[4]

Puebla, J.; Kim, J.; Kondou, K.; Otani, Y. Spintronic devices for energy-efficient data storage and energy harvesting. Commun. Mater. 2020, 1, 24.

[5]

Dieny, B.; Prejbeanu, I. L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S. O.; Akerman, J. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459.

[6]

Cherifi, R. O.; Ivanovskaya, V.; Phillips, L. C.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P. R.; Guiblin, N. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 2014, 13, 345–351.

[7]

Dai, B. Q.; Jackson, M.; Cheng, Y.; He, H. R.; Shu, Q. Y.; Huang, H. S.; Tai, L. X.; Wang, K. Review of voltage-controlled magnetic anisotropy and magnetic insulator. J. Magn. Magn. Mater. 2022, 563, 169924.

[8]

Fusil, S.; Garcia, V.; Barthélémy, A.; Bibes, M. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 2014, 44, 91–116.

[9]

Salev, P.; Fratino, L.; Sasaki, D.; Berkoun, R.; del Valle, J.; Kalcheim, Y.; Takamura, Y.; Rozenberg, M.; Schuller, I. K. Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nat. Commun. 2021, 12, 5499.

[10]

López, A.; Tornos, J.; Peralta, A.; Barbero, I.; Fernandez-Canizares, F.; Sanchez-Santolino, G.; Varela, M.; Rivera, A.; Camarero, J.; León, C. et al. Electrolyte gated synaptic transistor based on an ultra-thin film of La0.7Sr0.3MnO3. Adv. Electron. Mater. 2023, 9, 2300007.

[11]

Huang, J. J.; Chen, W. J. Flexible strategy of epitaxial oxide thin films. iScience 2022, 25, 105041.

[12]

Corzo, D.; Tostado-Blázquez, G.; Baran, D. Flexible electronics: Status, challenges and opportunities. Front Electron. 2020, 1, 594003.

[13]

Zhang, K. X.; Han, S.; Lee, Y.; Coak, M. J.; Kim, J.; Hwang, I.; Son, S.; Shin, J.; Lim, M.; Jo, D. et al. Gigantic current control of coercive field and magnetic memory based on nanometer-thin ferromagnetic van der Waals Fe3GeTe2. Adv. Mater. 2021, 33, e2004110.

[14]

Zhang, K. X.; Lee, Y.; Coak, M. J.; Kim, J.; Son, S.; Hwang, I.; Ko, D. S.; Oh, Y.; Jeon, I.; Kim, D. et al. Highly efficient nonvolatile magnetization switching and multi-level states by current in single van der Waals topological ferromagnet Fe3GeTe2. Adv. Funct. Mater. 2021, 31, 2105992.

[15]

Wang, Q. Y.; Zeng, Y.; Yuan, K.; Zeng, Q. Q.; Gu, P. F.; Xu, X. L.; Wang, H. W.; Han, Z.; Nomura, K.; Wang, W. H. et al. Magnetism modulation in Co3Sn2S2 by current-assisted domain wall motion. Nat. Electron. 2022, 6, 119–125.

[16]

Liu, L.; Qin, Q.; Lin, W. N.; Li, C. J.; Xie, Q. D.; He, S. K.; Shu, X. Y.; Zhou, C. H.; Lim, Z.; Yu, J. H. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 2019, 14, 939–944.

[17]

Salev, P.; Volvach, I.; Sasaki, D.; Lapa, P.; Takamura, Y.; Lomakin, V.; Schuller, I. K. Voltage-controlled magnetic anisotropy enabled by resistive switching. Phys. Rev. B 2023, 107, 054415.

[18]

Liu, W. K.; Cheng, B.; Ren, S. Q.; Huang, W.; Xie, J. H.; Zhou, G. J.; Qin, H. W.; Hu, J. F. Thermally assisted magnetization control and switching of Dy3fe5o12 and Tb3Fe5O12 ferrimagnetic garnet by low density current. J. Magn. Magn. Mater. 2020, 507, 166804.

[19]

Zheng, Z. Y.; Zhang, Z. Z.; Feng, X. Q.; Zhang, K.; Zhang, Y.; He, Y.; Chen, L.; Lin, K. L.; Zhang, Y. G.; Amiri, P. K. et al. Anomalous thermal-assisted spin-orbit torque-induced magnetization switching for energy-efficient logic-in-memory. ACS Nano 2022, 16, 8264–8272.

[20]

Li, D.; Yun, J. J.; Chen, S. W.; Cui, B. S.; Guo, X. B.; Wu, K.; Zuo, Y. L.; Yang, D. Z.; Wang, J. B.; Xi, L. Joule heating and temperature effects on current-induced magnetization switching in perpendicularly magnetized Pt/Co/C structures. J. Phys. D: Appl. Phys. 2018, 51, 265003.

[21]

Feng, J. F.; Wei, H. X.; Yu, G. Q.; Huang, H.; Guo, J. H.; Han, X. F. Exchange bias effect of current joule thermally modulated inverted vertical (Co/Pt) n /Co/IrMn nanomultilayers. Acta Phys. Sin. 2023, 72, 018501.

[22]

Wang, W. L.; Liu, J. Q.; Su, W.; Han, Y. L.; Du, Q.; Wu, J. G.; Hu, Z. Q.; Wang, C. Y.; Jiang, Z. D.; Wang, Z. G. et al. Heat-assisted magnetization switching in flexible spin-orbit torque devices. Nano Lett. 2024, 24, 2003–2010.

[23]

Du, Q.; Wang, W. L.; Tang, F.; Su, W.; Wu, J. G.; Hu, Z. Q.; Wang, Z. G.; Liu, M. Ultralow electric current-assisted magnetization switching due to thermally engineered magnetic anisotropy. ACS Appl. Mater. Interfaces 2024, 16, 7463–7469.

[24]

Hou, W. X.; Zhao, S. S.; Wang, T.; Yao, M. T.; Su, W.; Hu, Z. Q.; Zhou, Z. Y.; Liu, M. Manipulation of microwave magnetism in flexible La0.7Sr0.3MnO3 film by deformable ionic gel gating. Appl. Surf. Sci. 2021, 563, 150074.

[25]

Huang, J. J.; Wang, H.; Sun, X.; Zhang, X. H.; Wang, H. Y. Multifunctional La0.67Sr0.33MnO3 (LSMO) thin films integrated on mica substrates toward flexible spintronics and electronics. ACS Appl. Mater. Interfaces 2018, 10, 42698–42705.

[26]

Kang, K. T.; Corey, Z. J.; Hwang, J.; Sharma, Y.; Paudel, B.; Roy, P.; Collins, L.; Wang, X. J.; Lee, J. W.; Oh, Y. S. et al. Heterogeneous integration of freestanding bilayer oxide membrane for multiferroicity. Adv. Sci. 2023, 10, 2207481.

[27]

Wahler, M.; Homonnay, N.; Richter, T.; Müller, A.; Eisenschmidt, C.; Fuhrmann, B.; Schmidt, G. Inverse spin hall effect in a complex ferromagnetic oxide heterostructure. Sci. Rep. 2016, 6, 28727.

[28]

Trier, F.; Noël, P.; Kim, J. V.; Attané, J. P.; Vila, L.; Bibes, M. Oxide spin-orbitronics: Spin-charge interconversion and topological spin textures. Nat. Rev. Mater. 2021, 7, 258–274.

[29]

Hua, E. D.; Si, L.; Dai, K. J.; Wang, Q.; Ye, H.; Liu, K.; Zhang, J. F.; Lu, J. D.; Chen, K.; Jin, F. et al. Ru-doping-induced spin frustration and enhancement of the room-temperature anomalous hall effect in La2/3Sr1/3MnO3 films. Adv. Mater. 2022, 34, 2206685.

[30]

Endo, T.; Tsuruoka, S.; Tadano, Y.; Kaneta-Takada, S.; Seki, Y.; Kobayashi, M.; Anh, L. D.; Seki, M.; Tabata, H.; Tanaka, M. et al. Giant spin-valve effect in planar spin devices using an artificially implemented nanolength Mott-insulator region. Adv. Mater. 2023, 35, 2300110.

[31]

Zhu, M.; Cui, Z. Z.; Zhang, Y. Y.; Shan, Z. L.; Li, W. W.; Lu, Q. Y.; Li, Z. C.; Lu, Y. L. Dimensionality-driven in-plane antiferromagnetism in two-dimensional SrRuO3. Phys. Rev. B 2023, 107, 064418.

[32]

Vaz, D. C.; Barthélémy, A.; Bibes, M. Oxide spin-orbitronics: New routes towards low-power electrical control of magnetization in oxide heterostructures. Jpn. J. Appl. Phys. 2018, 57, 0902A4.

[33]

Cesaria, M.; Caricato, A. P.; Maruccio, G.; Martino, M. LSMO-growing opportunities by PLD and applications in spintronics. J. Phys. Conf. Ser. 2011, 292, 012003.

[34]

Liu, L.; Zhou, G. W.; Shu, X. Y.; Li, C. J.; Lin, W. N.; Ren, L. Z.; Zhou, C. H.; Zhao, T. Y.; Guo, R.; Xie, Q. D. et al. Room-temperature spin-orbit torque switching in a manganite-based heterostructure. Phys. Rev. B 2022, 105, 144419.

[35]

Qin, Q.; He, S. K.; Song, W. D.; Yang, P.; Wu, Q. Y.; Feng, Y. P.; Chen, J. S. Ultra-low magnetic damping of perovskite La0.7Sr0.3MnO3 thin films. Appl. Phys. Lett. 2017, 110, 112401.

[36]

Lee, H. K.; Barsukov, I.; Swartz, A. G.; Kim, B.; Yang, L.; Hwang, H. Y.; Krivorotov, I. N. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers. AIP Adv. 2016, 6, 055212.

[37]

Španková, M.; Štrbík, V.; Dobročka, E.; Chromik, Š.; Sojková, M.; Zheng, D. N.; Li, J. Characterization of epitaxial LSMO thin films with high curie temperature prepared on different substrates. Vacuum 2016, 126, 24–28.

[38]

Zhou, G. W.; Ji, H. H.; Kang, P. H.; Dou, J. R.; Wang, S. Q.; Xu, X. H. Overview of magnetic anisotropy evolution in La2/3Sr1/3MnO3-based heterostructures. Sci. China Mater. 2023, 66, 3401–3414.

[39]

Ha, S. D.; Viswanath, B.; Ramanathan, S. Electrothermal actuation of metal-insulator transition in SmNiO3 thin film devices above room temperature. J. Appl. Phys. 2012, 111, 124501.

[40]

Shukla, N.; Joshi, T.; Dasgupta, S.; Borisov, P.; Lederman, D.; Datta, S. Electrically induced insulator to metal transition in epitaxial SmNiO3 thin films. Appl. Phys. Lett. 2014, 105, 012108.

[41]

Kumar, S.; Pickett, M. D.; Strachan, J. P.; Gibson, G.; Nishi, Y.; Williams, R. S. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2. Adv. Mater. 2013, 25, 6128–6132.

[42]

Wang, M.; Matsuura, K.; Nakamura, M.; Sawada, M.; Kawasaki, M.; Kagawa, F. Magnetic field control of insulator-metal crossover in cobaltite films via thermally activated percolation. Phys. Rev. B 2022, 106, 155135.

[43]

Pellegrino, L.; Manca, N.; Kanki, T.; Tanaka, H.; Biasotti, M.; Bellingeri, E.; Siri, A. S.; Marré, D. Multistate memory devices based on free-standing VO2/TiO2 microstructures driven by joule self-heating. Adv. Mater. 2012, 24, 2929–2934.

[44]

Budhathoki, S.; Sapkota, A.; Law, K. M.; Nepal, B.; Ranjit, S.; Kc, S.; Mewes, T.; Hauser, A. J. Low gilbert damping and linewidth in magnetostrictive FeGa thin films. J. Magn. Magn. Mater. 2020, 496, 165906.

[45]

Nurgaliev, T.; Demidov, V. V.; Petrzhik, A. M.; Ovsyannikov, G. A.; Miteva, S.; Blagoev, B. Microwave losses in ferromagnetic thin LSMO films. J. Optoelectron. Adv. Mater. 2008, 10, 273–276.

[46]

Xiao, Z. A.; Zhao, J. H.; Lu, C.; Zhou, Z. Y.; Wang, H.; Zhang, L.; Wang, J. J.; Li, X. Y.; Wang, K. Y.; Zhao, Q. L. et al. Characteristic investigation of a flexible resistive memory based on a tunneling junction of Pd/BTO/LSMO on mica substrate. Appl. Phys. Lett. 2018, 113, 223501.

[47]

Zhang, Y. Q.; Cho, H. J.; Sugo, K.; Mikami, M.; Woo, S.; Jung, M. C.; Zhuang, Y. H.; Feng, B.; Sheu, Y. M.; Shin, W. et al. Low thermal conductivity of SrTiO3-LaTiO3 and SrTiO3-SrNbO3 thermoelectric oxide solid solutions. J. Am. Ceram. Soc. 2021, 104, 4075–4085.

[48]

Zhang, Z. Y.; Yuan, K. P.; Zhu, J.; Fan, X. H.; Zhou, J.; Tang, D. W. Thermal conductivity of SrTiO3 under high-pressure. Appl. Phys. Lett. 2022, 120, 262201.

[49]

Gray, A. S.; Uher, C. Thermal conductivity of mica at low temperature. J. Mater. Sci. 1977, 12, 959–965.

[50]

Wang, H.; Shen, L.; Lu, L.; Zhang, B.; Ma, C. R.; Cao, C. M.; Jiang, C. J.; Liu, M.; Jia, C. L. Ferromagnetic resonance of single-crystalline La0.67Sr0.33MnO3 thin film integrated on silicon. IEEE Electron Device Lett. 2019, 40, 1856–1859.

[51]

Zheng, M.; Guan, P. F. Mechanical tuning of room temperature magnetism in flexible manganite/mica heterostructures. J. Magn. Magn. Mater. 2022, 557, 169526.

[52]

Xue, X.; Zhou, Z. Y.; Dong, G. H.; Feng, M. M.; Zhang, Y. J.; Zhao, S. S.; Hu, Z. Q.; Ren, W.; Ye, Z. G.; Liu, Y. H. et al. Discovery of enhanced magnetoelectric coupling through electric field control of two-magnon scattering within distorted nanostructures. ACS Nano 2017, 11, 9286–9293.

[53]

Xie, X. J.; Zhao, X. N.; Dong, Y. N.; Qu, X. L.; Zheng, K.; Han, X. D.; Han, X.; Fan, Y. B.; Bai, L. H.; Chen, Y. X. et al. Controllable field-free switching of perpendicular magnetization through bulk spin-orbit torque in symmetry-broken ferromagnetic films. Nat. Commun. 2021, 12, 2473.

[54]

Blumenschein, N. A.; Stephen, G. M.; Cress, C. D.; LaGasse, S. W.; Hanbicki, A. T.; Bennett, S. P.; Friedman, A. L. High-speed metamagnetic switching of FeRH through joule heating. Sci. Rep. 2022, 12, 22061.

[55]

Brockman, J. S.; Gao, L.; Hughes, B.; Rettner, C. T.; Samant, M. G.; Roche, K. P.; Parkin, S. S. P. Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. Nat. Nanotechnol. 2014, 9, 453–458.

[56]

Rao, F.; Ding, K. Y.; Zhou, Y. X.; Zheng, Y. H.; Xia, M. J.; Lv, S. L.; Song, Z. T.; Feng, S. L.; Ronneberger, I.; Mazzarello, R. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 2017, 358, 1423–1427.

[57]

Petti, D.; Albisetti, E.; Reichlová, H.; Gazquez, J.; Varela, M.; Molina-Ruiz, M.; Lopeandía, A. F.; Olejník, K.; Novák, V.; Fina, I. et al. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 2013, 102, 192404.

[58]

Marti, X.; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, Q.; Paull, R. J.; Clarkson, J. D.; Kudrnovský, J.; Turek, I. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 2014, 13, 367–374.

[59]

Qin, P. X.; Yan, H.; Wang, X. N.; Chen, H. Y.; Meng, Z. A.; Dong, J. T.; Zhu, M.; Cai, J. L.; Feng, Z. X.; Zhou, X. R. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 2023, 613, 485–489.

Nano Research
Cite this article:
Du Q, Wang W, Sun X, et al. Efficient electrical control of magnetization switching and ferromagnetic resonance in flexible La0.7Sr0.3MnO3 films. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6905-1
Topics:

237

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 June 2024
Revised: 20 July 2024
Accepted: 21 July 2024
Published: 20 August 2024
© Tsinghua University Press 2024
Return