AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

One-pot synthesis of Cu:InP multishell quantum dots for near-infrared light-emitting devices

Pan Huang1,2Xiaonan Liu3Xiao Liu3Jing Wei3Fangze Liu1,2( )Hongbo Li3( )
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Zhuhai 519088, China
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

Abstract

InP quantum dots (QDs) are promising heavy-metal-free materials for next-generation solid-state lighting, covering from visible to near-infrared (NIR) range. Compared with the rapid development of visible InP QDs, the synthesis of high-performance NIR InP QDs remains to be solved. In this work, we report a simple one-pot synthesis of NIR InP QDs by controlling the Cu doping and designing a multishell structure. By replacing the conventional highly reactive phosphorus precursor with a slightly less reactive and low-cost ammonia phosphorus precursor, the nucleation process is effectively regulated for efficient Cu doping. In addition, the epitaxial growth of the ZnSe/ZnS shell further improves the stability and optical properties of InP QDs. Therefore, the synthesized Cu:InP/ZnSe/ZnS QDs have a photoluminescence quantum yield of 70% centered at 833 nm. The NIR InP light-emitting diodes exhibit a maximum radiance of 3.1 W·sr−1·m−2 and a peak external quantum efficiency of 2.71% centered at 864 nm.

Electronic Supplementary Material

Download File(s)
6900_ESM.pdf (2.5 MB)
6906_ESM.pdf (594.4 KB)

References

[1]

Vasilopoulou, M.; Fakharuddin, A.; García de Arquer, F. P.; Georgiadou, D. G.; Kim, H.; bin Mohd Yusoff, A. R.; Gao, F.; Nazeeruddin, M. K.; Bolink, H. J.; Sargent, E. H. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photonics 2021, 15, 656–669.

[2]

Nair, G. B.; Swart, H. C.; Dhoble, S. J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622.

[3]

Liu, D. J.; Li, G. G.; Dang, P. P.; Zhang, Q. Q.; Wei, Y.; Lian, H. Z.; Shang, M. M.; Lin, C. C.; Lin, J. Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2SbO6 by chemical unit cosubstitution: Night-vision and near-infrared spectroscopy detection applications. Angew. Chem., Int. Ed. 2021, 60, 14644–14649.

[4]

Yu, H. J.; Chen, J.; Mi, R. Y.; Yang, J. Y.; Liu, Y. G. Broadband near-infrared emission of K3ScF6:Cr3+ phosphors for night vision imaging system sources. Chem. Eng. J. 2021, 417, 129271.

[5]

Gao, F. H.; Khan, W. U.; Cheng, Z. Y.; Khan, W. U.; Ahmad, I.; Ye, Z. Q.; Yang, S. H.; Zhang, Y. L. Efficient ultra-broadband phosphors for high-power near-infrared LED and night vision imaging system sources. Dyes Pigm. 2023, 219, 111632.

[6]

Wang, H. J.; Zheng, M. M.; Xing, W. W.; Li, Y. X.; Wang, Y. Y.; Zhu, H. J.; Zhang, Y. M.; Yu, Q. L.; Liu, Y. Conformationally confined three-armed supramolecular folding for boosting near-infrared biological imaging. Chem. Sci. 2023, 14, 8401–8407.

[7]

Liu, Q.; Zeiske, S.; Jiang, X. S.; Desta, D.; Mertens, S.; Gielen, S.; Shanivarasanthe, R.; Boyen, H. G.; Armin, A.; Vandewal, K. Electron-donating amine-interlayer induced n-type doping of polymer: Nonfullerene blends for efficient narrowband near-infrared photo-detection. Nat. Commun. 2022, 13, 5194.

[8]

Wang, X. M.; Du, J. R.; Lin, H. W. Facilitating near-infrared persistent luminescence in Cr3+-doped gadolinium gallium garnets. Small Methods 2024, 8, 2301001.

[9]

Jiang, L. P.; Zhang, L. L.; Zhao, X. P.; Jiang, X.; Gao, P. P.; Su, Y. J. Awakening the dumb site to realize ultra-broadband NIR phosphor. Laser Photonics Rev. 2024, 18, 2301226.

[10]

Park, J. W.; Jeon, J.; Kim, G. B.; Jeong, K. H. Fully integrated ultrathin solid immersion grating microspectrometer for handheld visible and near-infrared spectroscopic applications. Adv. Sci. 2023, 10, 2304320.

[11]

Tang, Z. B.; Du, F.; Zhao, L.; Liu, H.; Leng, Z. H.; Xie, H. D.; Zhang, G. Y.; Wang, Y. H. Single-site occupancy of Eu2+ in multiple cations enables efficient ultra-broadband visible to near-infrared luminescence. Laser Photonics Rev. 2023, 17, 2200911.

[12]

Tseng, Z. L.; Chen, L. C.; Chao, L. W.; Tsai, M. J.; Luo, D.; Al Amin, N. R.; Liu, S. W.; Wong, K. T. Aggregation control, surface passivation, and optimization of device structure toward near-infrared perovskite quantum-dot light-emitting diodes with an EQE up to 15.4%. Adv. Mater. 2022, 34, 2109785.

[13]

Yin, W. X.; Zhang, X. Y.; Yang, X. Y.; Rogach, A. L.; Zheng, W. T. Emitter structure design of near-infrared quantum dot light-emitting devices. Mater. Today 2023, 67, 446–467.

[14]

Li, H. Y.; Bian, L. H.; Gu, K.; Fu, H.; Yang, G. L.; Zhong, H. Z.; Zhang, J. A near-infrared miniature quantum dot spectrometer. Adv. Opt. Mater. 2021, 9, 2100376.

[15]

Lian, W.; Tu, D. T.; Weng, X. K.; Yang, K. Y.; Li, F. S.; Huang, D. C.; Zhu, H. M.; Xie, Z.; Chen, X. Y. Near-infrared nanophosphors based on CuInSe2 quantum dots with near-unity photoluminescence quantum yield for micro-LEDs applications. Adv. Mater. 2024, 36, 2311011.

[16]

Yu, M. X.; Yang, X. H.; Zhang, Y. J.; Yang, H. C.; Huang, H. Y.; Wang, Z.; Dong, J. Y.; Zhang, R.; Sun, Z. Q.; Li, C. Y. et al. Pb-doped Ag2Se quantum dots with enhanced photoluminescence in the NIR-II window. Small 2021, 17, 2006111.

[17]

Ding, C. P.; Huang, Y. J.; Shen, Z. Y.; Chen, X. Y. Synthesis and bioapplications of Ag2S quantum dots with near-infrared fluorescence. Adv. Mater. 2021, 33, 2007768.

[18]

Almeida, G.; Ubbink, R. F.; Stam, M.; du Fossé, I.; Houtepen, A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758.

[19]

Chen, B.; Li, D. Y.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, 2002454.

[20]

Almeida, G.; van der Poll, L.; Evers, W. H.; Szoboszlai, E.; Vonk, S. J. W.; Rabouw, F. T.; Houtepen, A. J. Size-dependent optical properties of InP colloidal quantum dots. Nano Lett. 2023, 23, 8697–8703.

[21]

Park, J.; Won, Y. H.; Han, Y.; Kim, H. M.; Jang, E.; Kim, D. Tuning hot carrier dynamics of InP/ZnSe/ZnS quantum dots by shell morphology control. Small 2022, 18, 2105492.

[22]

Long, R.; Chen, X. P.; Zhang, X. H.; Chen, F.; Wu, Z. H.; Shen, H. B.; Du, Z. L. Carboxylic-free synthesis of InP quantum dots for highly efficient and bright electroluminescent device. Adv. Opt. Mater. 2023, 11, 2202594.

[23]

Dou, Y. J.; Wang, L.; Wang, Y. M.; Wu, Q. Q.; Cao, F.; Wang, S.; Huang, Q. Z.; Ma, Y. Y.; Yang, X. Y. Coordinating solvent synthesis of InP quantum dots with large sizes and suppressed defects for yellow light-emitting diodes. Adv. Opt. Mater. 2023, 11, 2300133.

[24]

Liu, H.; Chen, P. X.; Cui, Y. Y.; Gao, Y.; Cheng, J. J.; He, T. C.; Chen, R. InP semiconductor nanocrystals: Synthesis, optical properties, and applications. Adv. Opt. Mater. 2023, 11, 2300425.

[25]

Zhao, H. B.; Hu, H. L.; Zheng, J. P.; Qie, Y.; Yu, K. B.; Zhu, Y. B.; Luo, Z. Q.; Lin, L. H.; Yang, K. Y.; Guo, T. L. et al. One-pot synthesis of InP multishell quantum dots for narrow-bandwidth light-emitting devices. ACS Appl. Nano Mater. 2023, 6, 3797–3802.

[26]

Huang, W. T.; Cheng, C. L.; Bao, Z.; Yang, C. W.; Lu, K. M.; Kang, C. Y.; Lin, C. M.; Liu, R. S. Broadband Cr3+, Sn4+-doped oxide nanophosphors for infrared mini light-emitting diodes. Angew. Chem., Int. Ed. 2019, 58, 2069–2072.

[27]

Wang, Y. N.; Shang, M. M.; Huang, S.; Sun, Y. X.; Zhu, Y. Y.; Xing, X. L.; Dang, P. P.; Lin, J. Continuous ultra-broadband near-infrared Sc2O3-based nanophosphor realized by spectral bridge of Cr3+–Yb3+–Cr4+ for multiple optical applications. Adv. Opt. Mater. 2023, 11, 2300517.

[28]

Ma, Y. K.; Zhang, Y. N.; Liu, M.; Han, T. L. G.; Wang, Y. L.; Wang, X. J. Improving the performance of quantum dot sensitized solar cells by employing Zn doped CuInS2 quantum dots. Adv. Compos. Hybrid Mater. 2022, 5, 402–409.

[29]

Tang, Z. K.; Tao, Y.; Wang, K. H.; Bao, D. Q.; Gao, Z. Q.; Zhao, H. G.; Zhang, H.; Wen, Z.; Sun, X. H. Lattice Mn2+ doped CdSe/CdS quantum dots for high-performance photoelectrochemical hydrogen evolution. Nano Energy 2023, 113, 108533.

[30]

Ma, W. C.; Ren, Z. W.; Shi, H. F.; Xia, X. Q.; Wang, X. W.; Ji, H. F.; Chen, H.; Luo, C. Z.; Wang, C. H.; Chen, S. et al. Manganese doped tin oxide for stable and efficient quantum dot light-emitting diodes. Laser Photonics Rev. 2024, 18, 2400005.

[31]

Qiao, T.; Parobek, D.; Son, D. H. Photons and charges from colloidal doped semiconductor quantum dots. J. Mater. Chem. C 2019, 7, 14788–14797.

[32]

Gao, Y. J.; Li, X. B.; Wang, X. Z.; Zhao, N. J.; Zhao, Y. F.; Wang, Y.; Xin, Z. K.; Zhang, J. P.; Zhang, T. R.; Tung, C. H. et al. Site- and spatial-selective integration of non-noble metal ions into quantum dots for robust hydrogen photogeneration. Matter 2020, 3, 571–585.

[33]

Lu, H. X.; Hu, Z.; Liu, H.; Fu, Z. Z.; Dai, H. Q.; Zhang, W. L.; Guo, R. Q. Single-phase Cu, Mn-codoped ZnGaS/ZnS quantum dots for full-spectrum white-light-emitting diodes. ACS Appl. Nano Mater. 2023, 6, 7375–7383.

[34]

Li, X. Y.; Xuan, C. J.; Yang, B. X.; Wang, W. C.; Wang, M. Z.; Zhao, X. P. Highly stable water-soluble ZnSe:Cu quantum dots coated with doubly ZnS shell. J. Alloys Compd. 2023, 947, 169406.

[35]

Kim, J. S.; Kim, S. H.; Lee, H. S. Energy spacing and sub-band modulation of Cu doped ZnSe quantum dots. J. Alloys Compd. 2022, 914, 165372.

[36]

Luo, B.; Liu, J. B.; Guo, H.; Liu, X.; Song, R.; Shen, K.; Wang, Z. M.; Jing, D. W.; Selopal, G. S.; Rosei, F. High efficiency photoelectrochemical hydrogen generation using eco-friendly Cu doped Zn–In–Se colloidal quantum dots. Nano Energy 2021, 88, 106220.

[37]

Bang, J.; Das, S.; Yu, E. J.; Kim, K.; Lim, H.; Kim, S.; Hong, J. W. Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction. Nano Lett. 2020, 20, 6263–6271.

[38]

Koh, S.; Kim, W. D.; Bae, W. K.; Lee, Y. K.; Lee, D. C. Controlling ion-exchange balance and morphology in cation exchange from Cu3− x P nanoplatelets into InP crystals. Chem. Mater. 2019, 31, 1990–2001.

[39]

Kim, J.; Choi, H. S.; Wedel, A.; Yoon, S. Y.; Jo, J. H.; Kim, H. M.; Han, C. J.; Song, H. J.; Yi, J. M.; Jang, J. S. et al. Highly luminescent near-infrared Cu-doped InP quantum dots with a Zn–Cu–In–S/ZnS double shell scheme. J. Mater. Chem. C 2021, 9, 4330–4337.

[40]

Prins, P. T.; Spruijt, D. A. W.; Mangnus, M. J. J.; Rabouw, F. T.; Vanmaekelbergh, D.; de Mello Donega, C.; Geiregat, P. Slow hole localization and fast electron cooling in Cu-doped InP/ZnSe quantum dots. J. Phys. Chem. Lett. 2022, 13, 9950–9956.

[41]

Lim, M.; Lee, W.; Bang, G.; Lee, W. J.; Park, Y.; Kwon, Y.; Jung, Y.; Kim, S.; Bang, J. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Nanoscale 2019, 11, 10463–10471.

[42]

Du, R. Z.; Li, X. Y.; Li, Y. X.; Li, Y.; Hou, T. L.; Li, Y. M.; Qiao, C.; Zhang, J. T. Cation exchange synthesis of aliovalent doped InP QDs and their ZnSe x S1− x shell coating for enhanced fluorescence properties. J. Phys. Chem. Lett. 2023, 14, 670–676.

[43]

Zhao, H. Y.; Li, X.; Cai, M. K.; Liu, C.; You, Y. M.; Wang, R.; Channa, A. I.; Lin, F.; Huo, D.; Xu, G. F. et al. Role of copper doping in heavy metal-free InP/ZnSe core/shell quantum dots for highly efficient and stable photoelectrochemical cell. Adv. Energy Mater. 2021, 11, 2101230.

[44]

Sadeghi, S.; Bahmani Jalali, H.; Srivastava, S. B.; Melikov, R.; Baylam, I.; Sennaroglu, A.; Nizamoglu, S. High-performance, large-area, and ecofriendly luminescent solar concentrators using copper-doped InP quantum dots. iScience 2020, 23, 101272.

[45]

Navazi, Z. R.; Nemati, A.; Akbari, H.; Davaran, S. The effect of fatty amine chain length on synthesis process of Inp/Zns quantum dots. Orient. J. Chem. 2016, 32, 2163–2169.

[46]

Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.

[47]

Chen, Y. R.; Wang, R. X.; Kuang, Y. M.; Bian, Y. Y.; Chen, F.; Shen, H. B.; Chi, Z.; Ran, X.; Guo, L. J. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Nanoscale 2023, 15, 18920–18927.

[48]

Huang, P.; Liu, X. N.; Jin, G. Y.; Liu, F. Z.; Shen, H. B.; Li, H. B. Deep-red InP core-multishell quantum dots for highly bright and efficient light-emitting diodes. Adv. Opt. Mater. 2023, 11, 2300612.

[49]

Zhang, J.; Wang, J.; Yan, T.; Peng, Y. N.; Xu, D. J.; Deng, D. W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging. J. Mater. Chem. B 2017, 5, 8152–8160.

Nano Research
Cite this article:
Huang P, Liu X, Liu X, et al. One-pot synthesis of Cu:InP multishell quantum dots for near-infrared light-emitting devices. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6906-0
Topics:

252

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 June 2024
Revised: 20 July 2024
Accepted: 21 July 2024
Published: 10 August 2024
© Tsinghua University Press 2024
Return