Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
InP quantum dots (QDs) are promising heavy-metal-free materials for next-generation solid-state lighting, covering from visible to near-infrared (NIR) range. Compared with the rapid development of visible InP QDs, the synthesis of high-performance NIR InP QDs remains to be solved. In this work, we report a simple one-pot synthesis of NIR InP QDs by controlling the Cu doping and designing a multishell structure. By replacing the conventional highly reactive phosphorus precursor with a slightly less reactive and low-cost ammonia phosphorus precursor, the nucleation process is effectively regulated for efficient Cu doping. In addition, the epitaxial growth of the ZnSe/ZnS shell further improves the stability and optical properties of InP QDs. Therefore, the synthesized Cu:InP/ZnSe/ZnS QDs have a photoluminescence quantum yield of 70% centered at 833 nm. The NIR InP light-emitting diodes exhibit a maximum radiance of 3.1 W·sr−1·m−2 and a peak external quantum efficiency of 2.71% centered at 864 nm.
Vasilopoulou, M.; Fakharuddin, A.; García de Arquer, F. P.; Georgiadou, D. G.; Kim, H.; bin Mohd Yusoff, A. R.; Gao, F.; Nazeeruddin, M. K.; Bolink, H. J.; Sargent, E. H. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photonics 2021, 15, 656–669.
Nair, G. B.; Swart, H. C.; Dhoble, S. J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622.
Liu, D. J.; Li, G. G.; Dang, P. P.; Zhang, Q. Q.; Wei, Y.; Lian, H. Z.; Shang, M. M.; Lin, C. C.; Lin, J. Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2SbO6 by chemical unit cosubstitution: Night-vision and near-infrared spectroscopy detection applications. Angew. Chem., Int. Ed. 2021, 60, 14644–14649.
Yu, H. J.; Chen, J.; Mi, R. Y.; Yang, J. Y.; Liu, Y. G. Broadband near-infrared emission of K3ScF6:Cr3+ phosphors for night vision imaging system sources. Chem. Eng. J. 2021, 417, 129271.
Gao, F. H.; Khan, W. U.; Cheng, Z. Y.; Khan, W. U.; Ahmad, I.; Ye, Z. Q.; Yang, S. H.; Zhang, Y. L. Efficient ultra-broadband phosphors for high-power near-infrared LED and night vision imaging system sources. Dyes Pigm. 2023, 219, 111632.
Wang, H. J.; Zheng, M. M.; Xing, W. W.; Li, Y. X.; Wang, Y. Y.; Zhu, H. J.; Zhang, Y. M.; Yu, Q. L.; Liu, Y. Conformationally confined three-armed supramolecular folding for boosting near-infrared biological imaging. Chem. Sci. 2023, 14, 8401–8407.
Liu, Q.; Zeiske, S.; Jiang, X. S.; Desta, D.; Mertens, S.; Gielen, S.; Shanivarasanthe, R.; Boyen, H. G.; Armin, A.; Vandewal, K. Electron-donating amine-interlayer induced n-type doping of polymer: Nonfullerene blends for efficient narrowband near-infrared photo-detection. Nat. Commun. 2022, 13, 5194.
Wang, X. M.; Du, J. R.; Lin, H. W. Facilitating near-infrared persistent luminescence in Cr3+-doped gadolinium gallium garnets. Small Methods 2024, 8, 2301001.
Jiang, L. P.; Zhang, L. L.; Zhao, X. P.; Jiang, X.; Gao, P. P.; Su, Y. J. Awakening the dumb site to realize ultra-broadband NIR phosphor. Laser Photonics Rev. 2024, 18, 2301226.
Park, J. W.; Jeon, J.; Kim, G. B.; Jeong, K. H. Fully integrated ultrathin solid immersion grating microspectrometer for handheld visible and near-infrared spectroscopic applications. Adv. Sci. 2023, 10, 2304320.
Tang, Z. B.; Du, F.; Zhao, L.; Liu, H.; Leng, Z. H.; Xie, H. D.; Zhang, G. Y.; Wang, Y. H. Single-site occupancy of Eu2+ in multiple cations enables efficient ultra-broadband visible to near-infrared luminescence. Laser Photonics Rev. 2023, 17, 2200911.
Tseng, Z. L.; Chen, L. C.; Chao, L. W.; Tsai, M. J.; Luo, D.; Al Amin, N. R.; Liu, S. W.; Wong, K. T. Aggregation control, surface passivation, and optimization of device structure toward near-infrared perovskite quantum-dot light-emitting diodes with an EQE up to 15.4%. Adv. Mater. 2022, 34, 2109785.
Yin, W. X.; Zhang, X. Y.; Yang, X. Y.; Rogach, A. L.; Zheng, W. T. Emitter structure design of near-infrared quantum dot light-emitting devices. Mater. Today 2023, 67, 446–467.
Li, H. Y.; Bian, L. H.; Gu, K.; Fu, H.; Yang, G. L.; Zhong, H. Z.; Zhang, J. A near-infrared miniature quantum dot spectrometer. Adv. Opt. Mater. 2021, 9, 2100376.
Lian, W.; Tu, D. T.; Weng, X. K.; Yang, K. Y.; Li, F. S.; Huang, D. C.; Zhu, H. M.; Xie, Z.; Chen, X. Y. Near-infrared nanophosphors based on CuInSe2 quantum dots with near-unity photoluminescence quantum yield for micro-LEDs applications. Adv. Mater. 2024, 36, 2311011.
Yu, M. X.; Yang, X. H.; Zhang, Y. J.; Yang, H. C.; Huang, H. Y.; Wang, Z.; Dong, J. Y.; Zhang, R.; Sun, Z. Q.; Li, C. Y. et al. Pb-doped Ag2Se quantum dots with enhanced photoluminescence in the NIR-II window. Small 2021, 17, 2006111.
Ding, C. P.; Huang, Y. J.; Shen, Z. Y.; Chen, X. Y. Synthesis and bioapplications of Ag2S quantum dots with near-infrared fluorescence. Adv. Mater. 2021, 33, 2007768.
Almeida, G.; Ubbink, R. F.; Stam, M.; du Fossé, I.; Houtepen, A. J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758.
Chen, B.; Li, D. Y.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, 2002454.
Almeida, G.; van der Poll, L.; Evers, W. H.; Szoboszlai, E.; Vonk, S. J. W.; Rabouw, F. T.; Houtepen, A. J. Size-dependent optical properties of InP colloidal quantum dots. Nano Lett. 2023, 23, 8697–8703.
Park, J.; Won, Y. H.; Han, Y.; Kim, H. M.; Jang, E.; Kim, D. Tuning hot carrier dynamics of InP/ZnSe/ZnS quantum dots by shell morphology control. Small 2022, 18, 2105492.
Long, R.; Chen, X. P.; Zhang, X. H.; Chen, F.; Wu, Z. H.; Shen, H. B.; Du, Z. L. Carboxylic-free synthesis of InP quantum dots for highly efficient and bright electroluminescent device. Adv. Opt. Mater. 2023, 11, 2202594.
Dou, Y. J.; Wang, L.; Wang, Y. M.; Wu, Q. Q.; Cao, F.; Wang, S.; Huang, Q. Z.; Ma, Y. Y.; Yang, X. Y. Coordinating solvent synthesis of InP quantum dots with large sizes and suppressed defects for yellow light-emitting diodes. Adv. Opt. Mater. 2023, 11, 2300133.
Liu, H.; Chen, P. X.; Cui, Y. Y.; Gao, Y.; Cheng, J. J.; He, T. C.; Chen, R. InP semiconductor nanocrystals: Synthesis, optical properties, and applications. Adv. Opt. Mater. 2023, 11, 2300425.
Zhao, H. B.; Hu, H. L.; Zheng, J. P.; Qie, Y.; Yu, K. B.; Zhu, Y. B.; Luo, Z. Q.; Lin, L. H.; Yang, K. Y.; Guo, T. L. et al. One-pot synthesis of InP multishell quantum dots for narrow-bandwidth light-emitting devices. ACS Appl. Nano Mater. 2023, 6, 3797–3802.
Huang, W. T.; Cheng, C. L.; Bao, Z.; Yang, C. W.; Lu, K. M.; Kang, C. Y.; Lin, C. M.; Liu, R. S. Broadband Cr3+, Sn4+-doped oxide nanophosphors for infrared mini light-emitting diodes. Angew. Chem., Int. Ed. 2019, 58, 2069–2072.
Wang, Y. N.; Shang, M. M.; Huang, S.; Sun, Y. X.; Zhu, Y. Y.; Xing, X. L.; Dang, P. P.; Lin, J. Continuous ultra-broadband near-infrared Sc2O3-based nanophosphor realized by spectral bridge of Cr3+–Yb3+–Cr4+ for multiple optical applications. Adv. Opt. Mater. 2023, 11, 2300517.
Ma, Y. K.; Zhang, Y. N.; Liu, M.; Han, T. L. G.; Wang, Y. L.; Wang, X. J. Improving the performance of quantum dot sensitized solar cells by employing Zn doped CuInS2 quantum dots. Adv. Compos. Hybrid Mater. 2022, 5, 402–409.
Tang, Z. K.; Tao, Y.; Wang, K. H.; Bao, D. Q.; Gao, Z. Q.; Zhao, H. G.; Zhang, H.; Wen, Z.; Sun, X. H. Lattice Mn2+ doped CdSe/CdS quantum dots for high-performance photoelectrochemical hydrogen evolution. Nano Energy 2023, 113, 108533.
Ma, W. C.; Ren, Z. W.; Shi, H. F.; Xia, X. Q.; Wang, X. W.; Ji, H. F.; Chen, H.; Luo, C. Z.; Wang, C. H.; Chen, S. et al. Manganese doped tin oxide for stable and efficient quantum dot light-emitting diodes. Laser Photonics Rev. 2024, 18, 2400005.
Qiao, T.; Parobek, D.; Son, D. H. Photons and charges from colloidal doped semiconductor quantum dots. J. Mater. Chem. C 2019, 7, 14788–14797.
Gao, Y. J.; Li, X. B.; Wang, X. Z.; Zhao, N. J.; Zhao, Y. F.; Wang, Y.; Xin, Z. K.; Zhang, J. P.; Zhang, T. R.; Tung, C. H. et al. Site- and spatial-selective integration of non-noble metal ions into quantum dots for robust hydrogen photogeneration. Matter 2020, 3, 571–585.
Lu, H. X.; Hu, Z.; Liu, H.; Fu, Z. Z.; Dai, H. Q.; Zhang, W. L.; Guo, R. Q. Single-phase Cu, Mn-codoped ZnGaS/ZnS quantum dots for full-spectrum white-light-emitting diodes. ACS Appl. Nano Mater. 2023, 6, 7375–7383.
Li, X. Y.; Xuan, C. J.; Yang, B. X.; Wang, W. C.; Wang, M. Z.; Zhao, X. P. Highly stable water-soluble ZnSe:Cu quantum dots coated with doubly ZnS shell. J. Alloys Compd. 2023, 947, 169406.
Kim, J. S.; Kim, S. H.; Lee, H. S. Energy spacing and sub-band modulation of Cu doped ZnSe quantum dots. J. Alloys Compd. 2022, 914, 165372.
Luo, B.; Liu, J. B.; Guo, H.; Liu, X.; Song, R.; Shen, K.; Wang, Z. M.; Jing, D. W.; Selopal, G. S.; Rosei, F. High efficiency photoelectrochemical hydrogen generation using eco-friendly Cu doped Zn–In–Se colloidal quantum dots. Nano Energy 2021, 88, 106220.
Bang, J.; Das, S.; Yu, E. J.; Kim, K.; Lim, H.; Kim, S.; Hong, J. W. Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction. Nano Lett. 2020, 20, 6263–6271.
Koh, S.; Kim, W. D.; Bae, W. K.; Lee, Y. K.; Lee, D. C. Controlling ion-exchange balance and morphology in cation exchange from Cu3− x P nanoplatelets into InP crystals. Chem. Mater. 2019, 31, 1990–2001.
Kim, J.; Choi, H. S.; Wedel, A.; Yoon, S. Y.; Jo, J. H.; Kim, H. M.; Han, C. J.; Song, H. J.; Yi, J. M.; Jang, J. S. et al. Highly luminescent near-infrared Cu-doped InP quantum dots with a Zn–Cu–In–S/ZnS double shell scheme. J. Mater. Chem. C 2021, 9, 4330–4337.
Prins, P. T.; Spruijt, D. A. W.; Mangnus, M. J. J.; Rabouw, F. T.; Vanmaekelbergh, D.; de Mello Donega, C.; Geiregat, P. Slow hole localization and fast electron cooling in Cu-doped InP/ZnSe quantum dots. J. Phys. Chem. Lett. 2022, 13, 9950–9956.
Lim, M.; Lee, W.; Bang, G.; Lee, W. J.; Park, Y.; Kwon, Y.; Jung, Y.; Kim, S.; Bang, J. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Nanoscale 2019, 11, 10463–10471.
Du, R. Z.; Li, X. Y.; Li, Y. X.; Li, Y.; Hou, T. L.; Li, Y. M.; Qiao, C.; Zhang, J. T. Cation exchange synthesis of aliovalent doped InP QDs and their ZnSe x S1− x shell coating for enhanced fluorescence properties. J. Phys. Chem. Lett. 2023, 14, 670–676.
Zhao, H. Y.; Li, X.; Cai, M. K.; Liu, C.; You, Y. M.; Wang, R.; Channa, A. I.; Lin, F.; Huo, D.; Xu, G. F. et al. Role of copper doping in heavy metal-free InP/ZnSe core/shell quantum dots for highly efficient and stable photoelectrochemical cell. Adv. Energy Mater. 2021, 11, 2101230.
Sadeghi, S.; Bahmani Jalali, H.; Srivastava, S. B.; Melikov, R.; Baylam, I.; Sennaroglu, A.; Nizamoglu, S. High-performance, large-area, and ecofriendly luminescent solar concentrators using copper-doped InP quantum dots. iScience 2020, 23, 101272.
Navazi, Z. R.; Nemati, A.; Akbari, H.; Davaran, S. The effect of fatty amine chain length on synthesis process of Inp/Zns quantum dots. Orient. J. Chem. 2016, 32, 2163–2169.
Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.
Chen, Y. R.; Wang, R. X.; Kuang, Y. M.; Bian, Y. Y.; Chen, F.; Shen, H. B.; Chi, Z.; Ran, X.; Guo, L. J. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Nanoscale 2023, 15, 18920–18927.
Huang, P.; Liu, X. N.; Jin, G. Y.; Liu, F. Z.; Shen, H. B.; Li, H. B. Deep-red InP core-multishell quantum dots for highly bright and efficient light-emitting diodes. Adv. Opt. Mater. 2023, 11, 2300612.
Zhang, J.; Wang, J.; Yan, T.; Peng, Y. N.; Xu, D. J.; Deng, D. W. InP/ZnSe/ZnS quantum dots with strong dual emissions: Visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging. J. Mater. Chem. B 2017, 5, 8152–8160.