AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microstructural evolution in lithium plating process and its effect on the calendar storage life

Ki Hwan Koh1Dong Ju Lee1Anthony Mu1Kangwoon Kim2Taehee Kim1( )Zheng Chen1,2,3( )
Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA
Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
Sustainable Power and Energy Center, University of California San Diego, La Jolla, CA 92093, USA
Show Author Information

Graphical Abstract

Our research reveals that increasing the Li plating amount on metal anodes reduces Coulombic efficiency (C.E.) loss and mitigates corrosion issues during storage, suggesting that electrolyte selection for optimal storage life must account for Li plating levels to enhance battery performance and longevity.

Abstract

The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities, spotlighting Li metal anodes as potential successors to traditional Li-ion batteries (LIBs). Achieving longer calendar aging life for Li metal anodes is crucial for their practical use, given their propensity for corrosion due to a low redox potential, which leads to compromised cycling stability and significant capacity loss during storage. Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase (SEI), particularly its stability and growth rate. Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage, as assessed across various electrolytes. We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency (C.E.) loss during aging, due to a lower surface area-to-Li ratio. This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating, with higher capacities promoting better storage characteristics.

Electronic Supplementary Material

Download File(s)
6907_ESM.pdf (820.5 KB)

References

[1]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[2]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[3]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[4]

Holoubek, J.; Kim, K.; Yin, Y. J.; Wu, Z. H.; Liu, H. D.; Li, M. Q.; Chen, A.; Gao, H. P.; Cai, G. R.; Pascal, T. A. et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 2022, 15, 1647–1658.

[5]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[6]

Lu, H. T.; Yang, C. P.; Wang, F. F.; Wang, L.; Zhou, J. H.; Chen, W.; Yang, Q. H. Interfacial high-concentration electrolyte for stable lithium metal anode: Theory, design, and demonstration. Nano Res 2023, 16, 8321–8328.

[7]

Wang, Q. Y.; Liu, B.; Shen, Y. H.; Wu, J. K.; Zhao, Z. Q.; Zhong, C.; Hu, W. B. Confronting the challenges in lithium anodes for lithium metal batteries. Adv. Sci. 2021, 8, 2101111.

[8]

Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.

[9]

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[10]

Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2018, 2, 2167–2177.

[11]

Li, S.; Luo, Z.; Li, L.; Hu, J. G.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 2020, 32, 306–319.

[12]

Zhang, Y. J.; Wu, Y.; Li, H. Y.; Chen, J. H.; Lei, D. N.; Wang, C. X. A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nat. Commun. 2022, 13, 1297.

[13]

Ma, Q. T.; Cui, J. Y.; Luo, J. Y.; Dong, A. P. Nonreactive electrolyte additives for stable lithium metal anodes. ACS Appl. Energy Mater. 2022, 5, 3–13.

[14]

Chen, C.; Zhang, J. M.; Hu, B. R.; Liang, Q. W.; Xiong, X. H. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat. Commun. 2023, 14, 4018.

[15]

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

[16]

Chen, C.; Liang, Q. W.; Wang, G.; Liu, D. D.; Xiong, X. H. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 2022, 32, 2107249.

[17]

Fan, L. S.; Guo, Z. K.; Zhang, Y.; Wu, X.; Zhao, C. Y.; Sun, X.; Yang, G. Y.; Feng, Y. J.; Zhang, N. Q. Stable artificial solid electrolyte interphase films for lithium metal anode via metal-organic frameworks cemented by polyvinyl alcohol. J. Mater. Chem. A 2020, 8, 251–258.

[18]

Cao, X.; Jia, H.; Xu, W.; Zhang, J. G. Review-localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 2021, 168, 010522.

[19]

Efaw, C. M.; Wu, Q. S.; Gao, N. S. J.; Zhang, Y. G.; Zhu, H. Y.; Gering, K.; Hurley, M. F.; Xiong, H.; Hu, E. Y.; Cao, X. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 2023, 22, 1531–1539.

[20]

Zhang, C.; Gu, S. C.; Zhang, D. F.; Ma, J. B.; Zheng, H.; Zheng, M. Y.; Lv, R. T.; Yu, K.; Wu, J. Q.; Wang, X. M. et al. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Mater. 2022, 52, 355–364.

[21]

Liu, T. C.; Chen, X. D.; Zhan, C. C.; Cao, X. H.; Wang, Y. W.; Liu, J. H. Selective lithium deposition on 3D porous heterogeneous lithiophilic skeleton for ultrastable lithium metal anodes. ChemNanoMat 2020, 6, 1200–1207.

[22]

Feng, X.; Wu, H.-H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

[23]

Yang, C. P.; Zhang, L.; Liu, B. Y.; Xu, S. M.; Hamann, T.; McOwen, D.; Dai, J. Q.; Luo, W.; Gong, Y. H.; Wachsman, E. D. et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. USA 2018, 115, 3770–3775.

[24]

Dubarry, M.; Qin, N.; Brooker, P. Calendar aging of commercial Li-ion cells of different chemistries—A review. Curr. Opin. Electrochem. 2018, 9, 106–113.

[25]

Xiong, X. S.; Qiao, Q.; Zhou, Q.; Cheng, X. B.; Liu, L. L.; Fu, L. J.; Chen, Y. H.; Wang, B.; Wu, X. W.; Wu, Y. P. Constructing a lithiophilic polyaniline coating via in situ polymerization for dendrite-free lithium metal anode. Nano Res. 2023, 16, 8448–8456.

[26]

Boyle, D. T.; Huang, W.; Wang, H. S.; Li, Y. Z.; Chen, H.; Yu, Z. A.; Zhang, W. B.; Bao, Z. N.; Cui, Y. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 2021, 6, 487–494.

[27]

Kolesnikov, A.; Kolek, M.; Dohmann, J. F.; Horsthemke, F.; Börner, M.; Bieker, P.; Winter, M.; Stan, M. C. Galvanic corrosion of lithium-powder-based electrodes. Adv. Energy Mater. 2020, 10, 2000017.

[28]

Gunnarsdóttir, A. B.; Amanchukwu, C. V.; Menkin, S.; Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 20814–20827.

[29]

Lin, D. C.; Liu, Y. Y.; Li, Y. B.; Li, Y. Z.; Pei, A.; Xie, J.; Huang, W.; Cui, Y. Fast galvanic lithium corrosion involving a kirkendall-type mechanism. Nat. Chem. 2019, 11, 382–389.

[30]

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

[31]

Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.

[32]

Weng, S. T.; Zhang, X.; Yang, G. J.; Zhang, S. M.; Ma, B. Y.; Liu, Q. Y.; Liu, Y.; Peng, C. X.; Chen, H. X.; Yu, H. L. et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 2023, 14, 4474.

[33]

Parimalam, B. S.; MacIntosh, A. D.; Kadam, R.; Lucht, B. L. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6. J. Phys. Chem. C 2017, 121, 22733–22738.

[34]

Stetson, C.; Yin, Y. L.; Jiang, C. S.; DeCaluwe, S. C.; Al-Jassim, M.; Neale, N. R.; Ban, C.; Burrell, A. Temperature-dependent solubility of solid electrolyte interphase on silicon electrodes. ACS Energy Lett. 2019, 4, 2770–2775.

[35]

McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.

[36]

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

[37]

Chang, C. Y.; Yao, Y.; Li, R. R.; Cong, Z. F.; Li, L. W.; Guo, Z. H.; Hu, W. G.; Pu, X. Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. J. Mater. Chem. A 2022, 10, 9001–9009.

[38]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

Nano Research
Pages 8834-8841
Cite this article:
Koh KH, Lee DJ, Mu A, et al. Microstructural evolution in lithium plating process and its effect on the calendar storage life. Nano Research, 2024, 17(10): 8834-8841. https://doi.org/10.1007/s12274-024-6907-z
Topics:
Part of a topical collection:

383

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 February 2024
Revised: 06 July 2024
Accepted: 23 July 2024
Published: 21 August 2024
© Tsinghua University Press 2024
Return