Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanofluidic devices have turned out to be exemplary systems for investigating fluidic transport properties in a highly restricted area, where the electrostatic interactions or chemical reactions between nanochannel and flowing species strongly dominate the ions and flow transport. Numerous nanofluidic devices have recently been explored to manipulate ion currents and construct electronic devices. Enlightened by electronic field effect transistors, utilizing the electric field effect of nanopore nanochannels has also been adopted to develop versatile nanofluidic devices. Here, we report a nanopore-based nanofluidic unijunction transistor composed of a conical glass nanopipette with the biomaterial polydopamine (PDA) coated at its outer surface. The as-fabricated nanofluidic device exhibited negative differential resistance (NDR) and ion current oscillation (ICO) in ionic transport. The pre-doped copper ions in the PDA moved toward the tip as increasing the potential, having a robust shielding effect on the charge of the tip, thus affecting the surface charge density of the nanopore in the working zone. Finite element simulation based on a continuum model coupled with Stokes–Brinkman and Poisson–Nernst–Planck (PNP) equations revealed that the fluctuations in charge density remarkably affect the transport of ionic current in the nanofluidic device. The as-prepared nanofluidic semiconductor device was a ready-to-use equipment that required no additional external conditions. Our work provides a versatile and convenient way to construct nanofluidic electronic components; we believe by taking advantage of advanced surface modification methods, the oscillation frequency of the unijunction transistors could be controlled on demand, and more nanofluidic devices with resourceful functions would be exploited.
Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385–2401.
Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.
Lynge, M. E.; Van Der Westen, R.; Postma, A.; Städler, B. Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 2011, 3, 4916–4928.
Wang, Z.; Zou, Y.; Li, Y. W.; Cheng, Y. Y. Metal-containing polydopamine nanomaterials: Catalysis, energy, and theranostics. Small 2020, 16, 1907042.
Sedó, J.; Saiz-Poseu, J.; Busqué, F.; Ruiz-Molina, D. Catechol-based biomimetic functional materials. Adv. Mater. 2013, 25, 653–701.
Hemmatpour, H.; De Luca, O.; Crestani, D.; Stuart, M. C. A.; Lasorsa, A.; Van Der Wel, P. C. A.; Loos, K.; Giousis, T.; Haddadi-Asl, V.; Rudolf, P. New insights in polydopamine formation via surface adsorption. Nat. Commun. 2023, 14, 664.
Szpoganicz, B.; Gidanian, S.; Kong, P.; Farmer, P. Metal binding by melanins: Studies of colloidal dihydroxyindole-melanin, and its complexation by Cu(II) and Zn(II) ions. J. Inorg. Biochem. 2002, 89, 45–53.
Hong, L.; Simon, J. D. Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin. J. Phys. Chem. B 2007, 111, 7938–7947.
Lin, C. Y.; Combs, C.; Su, Y. S.; Yeh, L. H.; Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 2019, 141, 3691–3698.
Yusko, E. C.; An, R.; Mayer, M. Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano 2010, 4, 477–487.
Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850–10851.
Wang, D. C.; Kvetny, M.; Liu, J.; Brown, W.; Li, Y.; Wang, G. L. Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. J. Am. Chem. Soc. 2012, 134, 3651–3654.
Lan, W. J.; Edwards, M. A.; Luo, L.; Perera, R. T.; Wu, X. J.; Martin, C. R.; White, H. S. Voltage-rectified current and fluid flow in conical nanopores. Acc. Chem. Res. 2016, 49, 2605–2613.
Luo, L.; Holden, D. A.; White, H. S. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability. ACS Nano 2014, 8, 3023–3030.
Luo, L.; Holden, D. A.; Lan, W. J.; White, H. S. Tunable negative differential electrolyte resistance in a conical nanopore in glass. ACS Nano 2012, 6, 6507–6514.
Rabinowitz, J.; Edwards, M. A.; Whittier, E.; Jayant, K.; Shepard, K. L. Nanoscale fluid vortices and nonlinear electroosmotic flow drive ion current rectification in the presence of concentration gradients. J. Phys. Chem. A 2019, 123, 8285–8293.
Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W. Calcium binding and ionic conduction in single conical nanopores with polyacid chains: Model and experiments. ACS Nano 2012, 6, 9247–9257.
Siwy, Z. S.; Powell, M. R.; Kalman, E.; Astumian, R. D.; Eisenberg, R. S. Negative incremental resistance induced by calcium in asymmetric nanopores. Nano Lett. 2006, 6, 473–477.
Innes, L.; Powell, M. R.; Vlassiouk, I.; Martens, C.; Siwy, Z. S. Precipitation-induced voltage-dependent ion current fluctuations in conical nanopores. J. Phys. Chem. C 2010, 114, 8126–8134.
Zhang, X. L.; Han, X. W.; Qian, S. Z.; Yang, Y. J.; Hu, N. Tuning ion transport through a nanopore by self-oscillating chemical reactions. Anal. Chem. 2019, 91, 4600–4607.
Wang, L.; Sun, L. X.; Wang, C. M.; Chen, L.; Cao, L. X.; Hu, G. Q.; Xue, J. M.; Wang, Y. G. Nanofluidic pulser based on polymer conical nanopores. J. Phys. Chem. C 2011, 115, 22736–22741.
Powell, M. R.; Cleary, L.; Davenport, M.; Shea, K. J.; Siwy, Z. S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotechnol. 2011, 6, 798–802.
Siwy, Z.; Fuliński, A. A nanodevice for rectification and pumping ions. Am. J. Phys. 2004, 72, 567–574.
Hyland, B.; Siwy, Z. S.; Martens, C. C. Nanopore current oscillations: Nonlinear dynamics on the nanoscale. J. Phys. Chem. Lett. 2015, 6, 1800–1806.
Powell, M. R.; Sullivan, M.; Vlassiouk, I.; Constantin, D.; Sudre, O.; Martens, C. C.; Eisenberg, R. S.; Siwy, Z. S. Nanoprecipitation-assisted ion current oscillations. Nat. Nanotechnol. 2008, 3, 51–57.
Siwy, Z. S.; Powell, M. R.; Petrov, A.; Kalman, E.; Trautmann, C.; Eisenberg, R. S. Calcium-induced voltage gating in single conical nanopores. Nano Lett. 2006, 6, 1729–1734.
Lee, C. Y.; Choi, W.; Han, J. H.; Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 2010, 329, 1320–1324.
Esaki, L. New phenomenon in narrow germanium p-n junctions. Phys. Rev. 1958, 109, 603–604.
Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science, 1999, 286, 1550–1552.
Sharma, P.; Bernard, L. S.; Bazigos, A.; Magrez, A.; Ionescu, A. M. Room-temperature negative differential resistance in graphene field effect transistors: Experiments and theory. ACS Nano, 2015, 9, 620–625.
Maddar, F. M.; Perry, D.; Unwin, P. R. Confined crystallization of organic materials in nanopipettes: Tracking the early stages of crystal growth and making seeds for unusual polymorphs. Cryst. Growth Des. 2017, 17, 6565–6571.
Liu, W. C.; Mei, T. T.; Cao, Z. W.; Li, C.; Wu, Y. T.; Wang, L.; Xu, G. H.; Chen, Y. X.; Zhou, Y.; Wang, S. Y. et al. Bioinspired carbon nanotube-based nanofluidic ionic transistor with ultrahigh switching capabilities for logic circuits. Sci. Adv. 2024, 10, eadj7867.
Hu, Y. L.; Hua, Y.; Pan, Z. Q.; Qian, J. H.; Yu, X. Y.; Bao, N.; Huo, X. L.; Wu, Z. Q.; Xia, X. H. PNP nanofluidic transistor with actively tunable current response and ionic signal amplification. Nano Lett. 2022, 22, 3678–3684.
Wang, D. D.; Wang, Y.; Li, H. J.; Han, Y. C.; Hu, P.; Ma, K. S.; Sheves, M.; Jin, Y. D. Photoactivated bacteriorhodopsin/SiN X nanopore-based biological nanofluidic generator with single-protein sensitivity. ACS Nano, 2022, 16, 1589–1599.
Ma, X. Y.; Li, Y.; Zhang, J.; Ma, T. T.; Zhang, L.; Chen, Y.; Ying, Y. B.; Fu, Y. C. Metal-organic framework-decorated nanochannel electrode: Integration of internal nanoconfined space and outer surface for small-molecule sensing. ACS Appl. Mater. Interfaces 2023, 15, 27034–27045.
Liu, T. L.; Wu, X. Q.; Xu, H. Q.; Ma, Q.; Du, Q. J.; Yuan, Q.; Gao, P. C.; Xia, F. Revealing ionic signal enhancement with probe grafting density on the outer surface of nanochannels. Anal. Chem. 2021, 93, 13054–13062.
Liu, L. X.; Luo, C. H.; Zhang, J. H.; He, X.; Shen, Y.; Yan, B.; Huang, Y.; Xia, F.; Jiang, L. Synergistic effect of bio-inspired nanochannels: Hydrophilic DNA probes at inner wall and hydrophobic coating at outer surface for highly sensitive detection. Small 2022, 18, 2201925.
Li, X. C.; Zhai, T. Y.; Gao, P. C.; Cheng, H. L.; Hou, R. Z.; Lou, X. D.; Xia, F. Role of outer surface probes for regulating ion gating of nanochannels. Nat. Commun. 2018, 9, 40.
Guo, W. T.; Wang, Y.; Qi, G. H.; Wang, J. F.; Ren, J. T.; Jin, Y. D.; Wang, E. K. Dual-signal readout sensing of ATP content in single dental pulp stem cells during differentiation via functionalized glass nanopipettes. Anal. Chim. Acta 2024, 1293, 342200.
Yeh, L. H.; Zhang, M. K.; Qian, S. Z.; Hsu, J. P.; Tseng, S. Ion concentration polarization in polyelectrolyte-modified nanopores. J. Phys. Chem. C 2012, 116, 8672–8677.
Gao, R.; Ying, Y. L.; Li, Y. J.; Hu, Y. X.; Yu, R. J.; Lin, Y.; Long, Y. T. A 30 nm nanopore electrode: Facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions. Angew. Chem. 2018, 130, 1023–1027.
Ball, V.; Del Frari, D.; Michel, M.; Buehler, M. J.; Toniazzo, V.; Singh, M. K.; Gracio, J.; Ruch, D. Deposition mechanism and properties of thin polydopamine films for high added value applications in surface science at the nanoscale. BioNanoSci. 2012, 2, 16–34.
Heins, E. A.; Baker, L. A.; Siwy, Z. S.; Mota, M. O.; Martin, C. R. Effect of crown ether on Ion currents through synthetic membranes containing a single conically shaped nanopore. J. Phys. Chem. B 2005, 109, 18400–18407.
Pérez-Mitta, G.; Albesa, A. G.; Toimil Molares, M. E.; Trautmann, C.; Azzaroni, O. The influence of divalent anions on the rectification properties of nanofluidic diodes: Insights from experiments and theoretical simulations. ChemPhysChem 2016, 17, 2718–2725.
Prakash, S.; Zambrano, H. A.; Rangharajan, K. K.; Rosenthal-Kim, E.; Vasquez, N.; Conlisk, A. T. Electrokinetic transport of monovalent and divalent cations in silica nanochannels. Microfluid. Nanofluid. 2016, 20, 8.
Bashford, C. L.; Alder, G. M.; Pasternak, C. A. Fluctuation of surface charge in membrane pores. Biophys. J. 2002, 82, 2032–2040.
McCleskey, E. W. Calcium channel permeation: A field in flux. J. Gen. Physiol. 1999, 113, 765–772.
Dang, T. X.; McCleskey, E. W. Ion channel selectivity through stepwise changes in binding affinity. J. Gen. Physiol. 1998, 111, 185–193.
Lau, B.; Kedem, O.; Schwabacher, J.; Kwasnieski, D.; Weiss, E. A. An introduction to ratchets in chemistry and biology. Mater. Horiz. 2017, 4, 310–318.
Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 1997, 276, 917–922.
Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.
Siwy, Z.; Fuliński, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.