AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Collaborative effect between single-atom Re and S vacancy on modulating localized electronic structure of MoS2 catalysts for alkaline hydrogen evolution

Yajing Zhang1,2,3,4Xingkun Wang1,2,3Xiangju Song1,2,3Heqing Jiang1,2,3( )
Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Shandong Energy Institute, Qingdao 266101, China
Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Optimizing the catalytic activity and stability of molybdenum disulfide (MoS2) towards alkaline hydrogen evolution reaction (HER) is significant for sustaining green hydrogen. A moderate localized electronic structure of active sites plays a crucial role in determining the activity and stability of the catalysts, yet how to construct such localized electronic structure still remains indeterminacy. Enlightened by theoretical prediction, herein, the introduction of both single-atom Re and the adjacent S vacancy in MoS2 (denoted as Re-MoS2-Vs) exhibits collaborative effect on regulating the localized electronic structure of active sites (viz. Re-(S, Vs)-Mo). Such regulated electronic structure helps to decrease the energy barrier of the water dissociation and optimize hydrogen adsorption energy for enhancing alkaline HER performance. Most importantly, Mo–S bonds in the above local Re-(S, Vs)-Mo configurations are also strengthened for preventing the leaching of Mo and S atoms and then ensuring the long-time stability. Consequently, the deliberately designed Re-MoS2-Vs with a Re coordination number of ~ 5.0 is experimentally verified to exhibit a comparable electrocatalytic performance and robust operational stability over 120 h. This strategy provides a promising guidance for modulating the electronic structure of MoS2 based catalysts via double-tuning atomic-scale local configuration for HER applications.

Electronic Supplementary Material

Download File(s)
6909_ESM.pdf (5.4 MB)

References

[1]

Wang, X. S.; Zheng, Y.; Sheng, W. C.; Xu, Z. J.; Jaroniec, M.; Qiao, S. Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138.

[2]

Fu, H. Q.; Zhou, M.; Liu, P. F.; Liu, P. R.; Yin, H. J.; Sun, K. Z.; Yang, H. G.; Al-Mamun, M.; Hu, P. J.; Wang, H. F. et al. Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 2022, 144, 6028–6039.

[3]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[4]

Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246–1251.

[5]

Wang, J.; Fang, W. H.; Hu, Y.; Zhang, Y. H.; Dang, J. Q.; Wu, Y.; Chen, B. Z.; Zhao, H.; Li, Z. X. Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B: Environ. 2021, 298, 120490.

[6]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[7]

Wang, G. W.; Zhang, G. K.; Ke, X. X.; Chen, X. Y.; Chen, X.; Wang, Y. S.; Huang, G. Y.; Dong, J. C.; Chu, S. Q.; Sui, M. Direct synthesis of stable 1T-MoS2 doped with Ni single atoms for water splitting in alkaline media. Small 2022, 18, 2107238.

[8]

Liu, M. J.; Hybertsen, M. S.; Wu, Q. A physical model for understanding the activation of MoS2 basal-plane sulfur atoms for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 14835–14841.

[9]

Attanayake, N. H.; Thenuwara, A. C.; Patra, A.; Aulin, Y. V.; Tran, T. M.; Chakraborty, H.; Borguet, E.; Klein, M. L.; Perdew, J. P.; Strongin, D. R. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 7–13.

[10]

Sun, Y.; Zang, Y. P.; Tian, W. Z.; Yu, X. J.; Qi, J. Z.; Chen, L. W.; Liu, X.; Qiu, H. B. Plasma-induced large-area N, Pt-doping and phase engineering of MoS2 nanosheets for alkaline hydrogen evolution. Energy Environ. Sci. 2022, 15, 1201–1210.

[11]

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

[12]

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

[13]

Li, L.; Qin, Z. D.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D. et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 2019, 13, 6824–6834.

[14]

Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X. L.; Abild-Pedersen, F. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 2017, 8, 15113.

[15]

Wu, W. Z.; Niu, C. Y.; Wei, C.; Jia, Y.; Li, C.; Xu, Q. Activation of MoS2 basal planes for hydrogen evolution by zinc. Angew. Chem., Int. Ed. 2019, 58, 2029–2033.

[16]
Luo, Z. Y.; Guo, Y. R.; He, C. J.; Guan, Y.; Zhang, L.; Li, Y. L.; Zhang, Q. L.; He, C. X.; Sun, X. L.; Ren, X. Z. Creating high-entropy single atoms on transition disulfides through substrate-induced redox dynamics for efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202405017.
[17]

Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

[18]

Jiang, L.; Zhou, Q.; Li, J. J.; Xia, Y. X.; Li, H. X.; Li, Y. J. Engineering isolated S vacancies over 2D MoS2 basal planes for catalytic hydrogen evolution. ACS Appl. Nano Mater. 2022, 5, 3521–3530.

[19]

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

[20]

Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

[21]

Li, Q.; Zhao, Y. H.; Ling, C. Y.; Yuan, S. J.; Chen, Q.; Wang, J. L. Towards a comprehensive understanding of the reaction mechanisms between defective MoS2 and thiol molecules. Angew. Chem., Int. Ed. 2017, 56, 10501–10505.

[22]

Wang, X. K.; Zhou, X. K.; Li, C.; Yao, H. X.; Zhang, C. H.; Zhou, J.; Xu, R.; Chu, L.; Wang, H. L.; Gu, M. et al. Asymmetric Co-N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 2022, 34, 2204021.

[23]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[24]

Yang, S. Z.; Gong, Y. J.; Manchanda, P.; Zhang, Y. Y.; Ye, G. L.; Chen, S. M.; Song, L.; Pantelides, S. T.; Ajayan, P. M.; Chisholm, M. F. et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 2018, 30, 1803477.

[25]

Yu, J. M.; Qian, Y. T.; Wang, Q.; Su, C. L.; Lee, H.; Shang, L.; Zhang, T. R. Single-atomic rhenium-assisted 2H-to-1T phase transformation of MoS2 nanosheets boosting electrocatalytic hydrogen evolution. EES Catal. 2023, 1, 571–579.

[26]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[27]

Li, H. Y.; Jia, X. F.; Zhang, Q.; Wang, X. Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510–1537.

[28]

Luo, Z. Y.; Li, J. J.; Li, Y. L.; Wu, D. J.; Zhang, L.; Ren, X. Z.; He, C. X.; Zhang, Q. L.; Gu, M.; Sun, X. L. Band engineering induced conducting 2H-phase MoS2 by Pd–S–Re sites modification for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103823.

[29]

Nguyen, H. T. T.; Adofo, L. A.; Yang, S. H.; Kim, H. J.; Choi, S. H.; Kirubasankar, B.; Cho, B. W.; Ben-Smith, A.; Kang, J.; Kim, Y. M. et al. 1T’ Re x Mo1− x S2-2H MoS2 lateral heterojunction for enhanced hydrogen evolution reaction performance. Adv. Funct. Mater. 2023, 33, 2209572.

[30]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 364.

[31]

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution, Nat. Commun. 2021, 12, 5260.

[32]

Pattengale, B.; Huang, Y. C.; Yan, X. X.; Yang, S. Z.; Younan, S.; Hu, W. H.; Li, Z. D.; Lee, S.; Pan, X. Q.; Gu, J. et al. Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nat. Commun. 2020, 11, 4114.

[33]

Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

[34]

Mao, B. G.; Sun, P. P.; Jiang, Y.; Meng, T.; Guo, D. L.; Qin, J. W.; Cao, M. H. Identifying the transfer kinetics of adsorbed hydroxyl as a descriptor of alkaline hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 15232–15237.

[35]

Luo, Z. Y.; Zhang, H.; Yang, Y. Q.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.

[36]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[37]

Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.

[38]

Li, G. K.; Jang, H.; Liu, S. G.; Li, Z. J.; Kim, M. G.; Qin, Q.; Liu, X. E.; Cho, J. The synergistic effect of Hf–O–Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat. Commun. 2022, 13, 1270.

[39]

Wang, J. C.; He, J. J.; Odunmbaku, G. O.; Zhao, S.; Gou, Q. Z.; Han, G.; Xu, C. H.; Frauenheim, T.; Li, M. Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage. Chem. Eng. J 2021, 414, 128811.

[40]

Garcia-Esparza, A. T.; Park, S.; Abroshan, H.; Mellone, O. A. P.; Vinson, J.; Abraham, B.; Kim, T. R.; Nordlund, D.; Gallo, A.; Alonso-Mori, R. et al. Local structure of sulfur vacancies on the basal plane of monolayer MoS2. ACS Nano 2022, 16, 6725–6733.

[41]

Liu, Z. P.; Gao, Z. C.; Liu, Y. H.; Xia, M. S.; Wang, R. W.; Li, N. Heterogeneous nanostructure based on 1T-phase MoS2 for enhanced electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 25291–25297.

[42]

Oh, N. K.; Seo, J.; Lee, S.; Kim, H. J.; Kim, U.; Lee, J.; Han, Y. K.; Park, H. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 2021, 12, 4606.

[43]

Li, Y.; Gu, Q. F.; Johannessen, B.; Zheng, Z.; Li, C.; Luo, Y. T.; Zhang, Z. Y.; Zhang, Q.; Fan, H. N.; Luo, W. B. et al. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy 2021, 84, 105898.

[44]

Liu, Z. P.; Wang, K. W.; Li, Y. J.; Yuan, S. S.; Huang, G. Q.; Li, X. T.; Li, N. Activation engineering on metallic 1T-MoS2 by constructing in-plane heterostructure for efficient hydrogen generation. Appl. Catal. B: Environ. 2022, 300, 120696.

[45]

Huang, J. B.; Hao, M. Y.; Mao, B. G.; Zheng, L. R.; Zhu, J.; Cao, M. H. The underlying molecular mechanism of fence engineering to break the activity-stability trade-off in catalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202114899.

[46]

Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

[47]

Chen, B.; Wang, D. S.; Tan, J. Y.; Liu, Y. Q.; Jiao, M. L.; Liu, B. L.; Zhao, N. Q.; Zou, X. L.; Zhou, G. M.; Cheng, H. M. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J. Am. Chem. Soc. 2022, 144, 3106–3116.

[48]

Kwon, I. S.; Kwak, I. H.; Ju, S.; Kang, S.; Han, S.; Park, Y. C.; Park, J.; Park, J. Adatom doping of transition metals in ReSe2 nanosheets for enhanced electrocatalytic hydrogen evolution reaction. ACS Nano 2020, 14, 12184–12194.

[49]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[50]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy 2016, 1, 16184.

[51]

Wu, T.; Song, E. H.; Zhang, S. N.; Luo, M. J.; Zhao, C. D.; Zhao, W.; Liu, J. J.; Huang, F. Q. Engineering metallic heterostructure based on Ni3N and 2M-MoS2 for alkaline water electrolysis with industry-compatible current density and stability. Adv. Mater. 2022, 34, 2108505.

[52]

Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. D. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.

[53]

Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

[54]

Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S. S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.

[55]

Li, J. C.; Zhang, C.; Ma, H. J.; Wang, T. H.; Guo, Z. Q.; Yang, Y.; Wang, Y. Y.; Ma, H. X. Modulating interfacial charge distribution of single atoms confined in molybdenum phosphosulfide heterostructures for high efficiency hydrogen evolution. Chem. Eng. J. 2021, 414, 128834.

[56]

Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

[57]

Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

[58]

Qi, K.; Yu, S. S.; Wang, Q. Y.; Zhang, W.; Fan, J. C.; Zheng, W. T.; Cui, X. Q. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity, J. Mater. Chem. A 2016, 4, 4025–4031.

[59]

Ge, J. M.; Zhang, D. B.; Qin, Y.; Dou, T.; Jiang, M. H.; Zhang, F. Z.; Lei, X. D. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B: Environ. 2021, 298, 120557.

[60]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.

[61]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[62]

Deng, S. J.; Luo, M.; Ai, C. Z.; Zhang, Y.; Liu, B.; Huang, L.; Jiang, Z.; Zhang, Q. H.; Gu, L.; Lin, S. W. et al. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16289–16296.

[63]

Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 2016, 15, 640–646.

Nano Research
Cite this article:
Zhang Y, Wang X, Song X, et al. Collaborative effect between single-atom Re and S vacancy on modulating localized electronic structure of MoS2 catalysts for alkaline hydrogen evolution. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6909-x
Topics:

125

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 May 2024
Revised: 08 July 2024
Accepted: 21 July 2024
Published: 30 August 2024
© Tsinghua University Press 2024
Return