AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Asymmetric fireproof gel polymer electrolyte constructed by boron-contained covalent organic framework for dendrite-free sodium metal battery

Zhanming Liu1,§Rui Wang1,§Jiayi Yu1Zhengrui Miao1Zijian Xu1Jianguo Ren2Suli Chen1( )Tianxi Liu1
Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
BTR New Material Group Co., Ltd., Shenzhen 518000, China

§ Zhanming Liu and Rui Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). However, GPEs often suffer from combustion risk and inferior interfacial compatibility toward Na metal anode, which severely limit their wide commercial applications. Here, a rational design of asymmetric fireproof GPE (AFGPE) modified with a boron-contained covalent organic framework (BCOF) on one side is developed through in-situ crosslinking polymerization process. Benefiting from the unique structure and composition, the resulting AFGPE exhibits high Na+ transference number, wide electrochemical window, excellent mechanical properties and high safety. Especially, the nanoscale BCOF layer with uniform nanochannels works as ion sieve that homogenizes Na+ flux during Na plating process, while the abundant Lewis-acid B sites can strongly capture counter anions and decrease space charge layer at anode side, thus promoting the uniform Na deposition to effectively suppress dendrite growth. Consequently, the Na/AFGPE/Na symmetric cells demonstrate remarkable cycling stability for over 1200 h at 0.1 mA·cm−2, and the solid-state SMBs exhibit outstanding cycling properties and rate capability, delivering a high capacity retention of 96.4% under current density of 1 C for over 1000 cycles.

Electronic Supplementary Material

Download File(s)
6910_ESM.pdf (2 MB)

References

[1]

Wang, Y. X.; Dong, H.; Katyal, N.; Hao, H. C.; Liu, P. C.; Celio, H.; Henkelman, G.; Watt, J.; Mitlin, D. A sodium-antimonytelluride intermetallic allows sodium-metal cycling at 100% depth of discharge and as an anode-free metal battery. Adv. Mater. 2022, 34, 2106005.

[2]

Wang, X. Y.; Yang, C.; Yao, L. B.; Wang, Y. C.; Jiang, N.; Liu, Y. Anion/cation solvation engineering for a ternary low-concentration electrolyte toward high-voltage and long-life sodium-ion batteries. Adv. Funct. Mater. 2024, 34, 2315007.

[3]

Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035.

[4]

Yang, M.; Feng, F.; Shi, Z. H.; Guo, J. H.; Wang, R.; Xu, Z. J.; Liu, Z. M.; Cai, T. X.; Wang, Z. Y.; Wang, C. X. et al. Facile design of asymmetric flame-retardant gel polymer electrolyte with excellent interfacial stability for sodium metal batteries. Energy Storage Mater. 2023, 56, 611–620.

[5]

Guo, J. H.; Feng, F.; Jiang, X. Y.; Wang, R.; Chu, D. K.; Ren, Y. F.; Chen, F. F.; He, P.; Ma, Z. F.; Chen, S. L. et al. Boosting selective Na+ migration kinetics in structuring composite polymer electrolyte realizes ultrastable all-solid-state sodium batteries. Adv. Funct. Mater. 2024, 34, 2313496.

[6]

Chen, Z.; Wang, K. L.; Pei, P. C.; Zuo, Y. Y.; Wei, M. H.; Wang, H. W.; Zhang, P. F.; Shang, N. Advances in electrolyte safety and stability of ion batteries under extreme conditions. Nano Res. 2023, 16, 2311–2324.

[7]

Ren, Y. F.; Yang, M.; Shi, Z. H.; Guo, J. H.; Chu, D. K.; Feng, F.; Li, H. P.; Ma, Z. F.; Chen, S. L.; Liu, T. X. A metalophilic, anion-trapped composite gel electrolyte enables highly stable electrode/electrolyte interfaces in sodium metal batteries. Energy Storage Mater. 2023, 61, 102909.

[8]

Li, L. L.; Zhu, M.; Wang, G. Y.; Yu, F. F.; Wen, L. Y.; Liu, H. K.; Dou, S. X.; Wu, C. An in-situ generated Bi-based sodiophilic substrate with high structural stability for high-performance sodium metal batteries. J. Energy Chem. 2022, 71, 595–603.

[9]

Li, P. J.; Huang, X. B.; Jiang, Z. P.; Zhang, H.; Yu, P. W.; Lu, X.; Xie, J. High-rate sodium metal batteries enabled by trifluormethylfullerene additive. Nano Res. 2022, 15, 7172–7179.

[10]

Sun, Y.; Li, J. C.; Zhou, H. S.; Guo, S. H. Wide-temperature-range sodium-metal batteries: From fundamentals and obstacles to optimization. Energy Environ. Sci. 2023, 16, 4759–4811.

[11]

Zhou, X. Y.; Zhou, Y. F.; Yu, L.; Qi, L. H.; Oh, K. S.; Hu, P.; Lee, S. Y.; Chen, C. J. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 2024, 53, 5291–5337.

[12]

Zhang, W. C.; Zhang, J.; Liu, X. C.; Li, H.; Guo, Y.; Geng, C. N.; Tao, Y.; Yang, Q. H. In-situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na+ solvation structure for sodium metal batteries. Adv. Funct. Mater. 2022, 32, 2201205.

[13]

Wang, Z.; Heasman, P.; Rostami, J.; Benselfelt, T.; Linares, M.; Li, H. L.; Iakunkov, A.; Sellman, F.; Östmans, R.; Hamedi, M. M. et al. Dynamic networks of cellulose nanofibrils enable highly conductive and strong polymer gel electrolytes for lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2212806.

[14]

Yang, M.; Feng, F.; Ren, Y. F.; Chen, S. Z.; Chen, F. F.; Chu, D. K.; Guo, J. H.; Shi, Z. H.; Cai, T. X.; Zhang, W. L. et al. Coupling anion-capturer with polymer chains in fireproof gel polymer electrolyte enables dendrite-free sodium metal batteries. Adv. Funct. Mater. 2023, 33, 2305383.

[15]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[16]

Zhu, G. R.; Zhang, Q.; Liu, Q. S.; Bai, Q. Y.; Quan, Y. Z.; Gao, Y.; Wu, G.; Wang, Y. Z. Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries. Nat. Commun. 2023, 14, 4617.

[17]

Shi, Z. H.; Yang, M.; Ren, Y. F.; Wang, Y. Z.; Guo, J. H.; Yin, J.; Lai, F. L.; Zhang, W. L.; Chen, S. L.; Alshareef, H. N. et al. Highly reversible Zn anodes achieved by enhancing ion-transport kinetics and modulating Zn (002) deposition. ACS Nano 2023, 17, 21893–21904.

[18]

Guo, J. H.; Feng, F.; Zhao, S. Q.; Wang, R.; Yang, M.; Shi, Z. H.; Ren, Y. F.; Ma, Z. F.; Chen, S. L.; Liu, T. X. Achieving ultra-stable all-solid-state sodium metal batteries with anion-trapping 3D fiber network enhanced polymer electrolyte. Small 2023, 19, 2206740.

[19]

Guo, J. H.; Feng, F.; Zhao, S. Q.; Shi, Z. H.; Wang, R.; Yang, M.; Chen, F. F.; Chen, S. L.; Ma, Z. F.; Liu, T. X. High FeLS(C) electrochemical activity of an iron hexacyanoferrate cathode boosts superior sodium ion storage. Carbon Energy 2023, 5, e314.

[20]

Qiu, Y. S.; Xu, J. Challenges and prospects for room temperature solid-state sodium-sulfur batteries. Nano Res. 2024, 17, 1402–1426.

[21]

Xu, Z. J.; Shi, Z. H.; Chang, Z.; Feng, F.; Liu, Z. Y.; Chu, D. K.; Ren, J. G.; Ma, Z. F.; Chen, S. L.; Liu, T. X. Plasma-assisted aerogel interface engineering enables uniform Zn2+ flux and fast desolvation kinetics toward zinc metal batteries. J. Energy Chem. 2024, 95, 29–38.

[22]

Jiang, G. X.; Liu, J. D.; Wang, Z. S.; Ma, J. M. Stable non-flammable phosphate electrolyte for lithium metal batteries via solvation regulation by the additive. Adv. Funct. Mater. 2023, 33, 2300629.

[23]

Tan, S. J.; Tian, Y. F.; Zhao, Y.; Feng, X. X.; Zhang, J.; Zhang, C. H.; Fan, M.; Guo, J. C.; Yin, Y. X.; Wang, F. Y. et al. Noncoordinating flame-retardant functional electrolyte solvents for rechargeable lithium-ion batteries. J. Am. Chem. Soc. 2022, 144, 18240–18245.

[24]

Fan, L.; Xie, H. B.; Hu, Y. Y.; Caixiang, Z. M.; Rao, A. M.; Zhou, J.; Lu, B. A. A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 2023, 16, 305–315.

[25]

Hu, L.; Li, H.; Chen, F.; Liu, Y. T.; Wang, J. Z.; Ma, C. Overcoming the Na-ion conductivity bottleneck for the cost-competitive chloride solid electrolytes. J. Energy Chem. 2024, 95, 1–8.

[26]

Mu, X. W.; Li, X. J.; Liao, C.; Yu, H.; Jin, Y.; Yu, B.; Han, L. F.; Chen, L. K.; Kan, Y. C.; Song, L. et al. Phosphorus-fixed stable interfacial nonflammable gel polymer electrolyte for safe flexible lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2203006.

[27]

Zuo, C. J.; Dong, D. J.; Wang, H. W.; Sun, Y.; Lu, Y. C. Bromide-based nonflammable electrolyte for safe and long-life sodium metal batteries. Energy Environ. Sci. 2024, 17, 791–799.

[28]

Gou, J. R.; Zhang, Z.; Wang, S. Q.; Huang, J. L.; Cui, K. X.; Wang, H. H. An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries. Adv. Mater. 2024, 36, 2309677.

[29]

Shen, Z. C.; Cheng, Y. F.; Sun, S. H.; Ke, X.; Liu, L. Y.; Shi, Z. C. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy 2021, 3, 482–508.

[30]

Lai, H. J.; Lu, Y.; Zha, W.; Hu, Y. Y.; Zhang, Y.; Wu, X. W.; Wen, Z. Y. In situ generated composite gel polymer electrolyte with crosslinking structure for dendrite-free and high-performance sodium metal batteries. Energy Storage Mater. 2023, 54, 478–487.

[31]

Liu, Y. L.; Wang, L.; Zeng, Q. Y.; Kang, Q.; Yan, C. A homologous strategy to parallelly construct doped MOFs-derived electrodes for flexible solid-state hybrid supercapacitors. Nano Res. 2023, 16, 10890–10898.

[32]

Huang, R. L.; Xu, R. C.; Zhang, J. T.; Wang, J. Y.; Zhou, T. Y.; Liu, M. Y.; Wang, X. L. PVDF-HFP-SN-based gel polymer electrolyte for high-performance lithium-ion batteries. Nano Res. 2023, 16, 9480–9487.

[33]

Wang, Z. R.; Zhang, Y. C.; Jiang, H. Y.; Wei, C. L.; An, Y. L.; Tan, L. W.; Xiong, S. L.; Feng, J. K. Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Res. 2023, 16, 458–465.

[34]

Lin, P. X.; Chen, G. H.; Kang, Y. H.; Zhang, M. H.; Yang, J.; Lv, Z. H.; Yang, Y.; Zhao, J. B. Simultaneous Inhibition of Zn dendrites and polyiodide ions shuttle effect by an anion concentrated electrolyte membrane for long lifespan aqueous zinc-iodine batteries. ACS Nano 2023, 17, 15492–15503.

[35]

Dong, G. Y.; Cheng, Y.; Zhang, H.; Hu, X. K.; Xu, H. R.; Abdelmaoula, A. E.; Xu, L. Molecular-scale interaction between sub-1 nm cluster chains and polymer for high-performance solid electrolyte. Energy Storage Mater. 2024, 69, 103381.

[36]

Arrese-Igor, M.; Martinez-Ibañez, M.; Orue, A.; Pavlenko, E.; Dumont, E.; Armand, M.; Aguesse, F.; López Aranguren, P. Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries. Nano Res. 2023, 16, 8377–8384.

[37]

Hu, X. Y.; Liu, K. L.; Zhang, S. J.; Shao, G. S.; Silva, S. R. P.; Zhang, P. A functional gel polymer electrolyte based on PVDF-HFP/gelatin toward dendrite-free lithium metal batteries. Nano Res. 2024, 17, 2790–2799.

[38]

Thirstrup, C.; Snedden, A.; Deleebeeck, L. C. Addressing the challenges of traceable electrolytic conductivity measurements in water. Meas. Sci. Technol. 2017, 28, 124001.

[39]

Zhai, Y. F.; Hou, W. S.; Tao, M. M.; Wang, Z. T.; Chen, Z. Y.; Zeng, Z.; Liang, X.; Paoprasert, P.; Yang, Y.; Hu, N. et al. Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv. Mater. 2022, 34, 2205560.

Nano Research
Cite this article:
Liu Z, Wang R, Yu J, et al. Asymmetric fireproof gel polymer electrolyte constructed by boron-contained covalent organic framework for dendrite-free sodium metal battery. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6910-0
Topics:

176

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 May 2024
Revised: 15 July 2024
Accepted: 22 July 2024
Published: 13 August 2024
© Tsinghua University Press 2024
Return