AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication | Online First

Chiral metal nanocluster within nanoarchitecture of fullerene C60: Chirality transfer and improvement of nonlinear optical property

Jinrui LiYuting BiZiyao LiuZhijie YangXia XinLei Feng( )Hongguang Li( )Jingcheng Hao
Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Show Author Information

Graphical Abstract

Abstract

Interaction between heterogeneous, nanometer-sized building blocks (NSBBs) is fascinating from viewpoints of both structures and functions. We report the co-assembly of fullerene C60 and a chiral silver nanocluster (Ag6), which yields C60 nanoarchitecture decorated with a small amount of Ag6. While Ag6 exhibits circular dichroism (CD) signal mainly in the ultraviolet (UV) region, the signal of the C60-Ag6 hybrid extends to visible region (over 700 nm). Up to five pairs of CD signals were distinguished, which match well with the absorption of the C60 crystal. The successful chirality transfer from the guest of Ag6 to C60-dominated supramolecular system indicates that the “sergeants and soldiers” effect is valid in architectonics of NSBBs. In addition, the doping of Ag6 leads to pronounced nonlinear optical response, paving a new way for the development of chiral optical materials.

Electronic Supplementary Material

Download File(s)
6913_ESM.pdf (5.5 MB)

References

[1]

Shi, W. D.; Salerno, F.; Ward, M. D.; Santana-Bonilla, A.; Wade, J.; Hou, X. Y.; Liu, T.; Dennis, T. J. S.; Campbell, A. J.; Jelfs, K. E. et al. Fullerene desymmetrization as a means to achieve single-enantiomer electron acceptors with maximized chiroptical responsiveness. Adv. Mater. 2021, 33, 2004115.

[2]

Hashikawa, Y.; Okamoto, S.; Sadai, S.; Murata, Y. Chiral open-[60]fullerene ligands with giant dissymmetry factors. J. Am. Chem. Soc. 2022, 144, 18829–18833.

[3]

Hashikawa, Y.; Sadai, S.; Okamoto, S.; Murata, Y. Near-infrared-absorbing chiral open [60]fullerenes. Angew. Chem., Int. Ed. 2023, 62, e202215380.

[4]

Yamamura, M.; Saito, T.; Nabeshima, T. Phosphorus-containing chiral molecule for fullerene recognition based on concave/convex interaction. J. Am. Chem. Soc. 2014, 136, 14299–14306.

[5]

Lo, S. W.; Kitao, T.; Nada, Y.; Murata, K.; Ishii, K.; Uemura, T. Chiral induction in buckminsterfullerene using a metal-organic framework. Angew. Chem., Int. Ed. 2021, 60, 17947–17951.

[6]

Smerdon, J. A.; Rankin, R. B.; Greeley, J. P.; Guisinger, N. P.; Guest, J. R. Chiral “pinwheel” heterojunctions self-assembled from C60 and pentacene. ACS Nano 2013, 7, 3086–3094.

[7]

Xu, B.; Tao, C. G.; Cullen, W. G.; Reutt-Robey, J. E.; Williams, E. D. Chiral symmetry breaking in two-dimensional C60-ACA intermixed systems. Nano Lett. 2005, 5, 2207–2211.

[8]

Straus, D. B.; Cava, R. J. Self-assembly of a chiral cubic three-connected net from the high symmetry molecules C60 and SnI4. J. Am. Chem. Soc. 2020, 142, 13155–13161.

[9]

Straus, D. B.; Cava, R. J. Generalizing the chiral self-assembly of spheres and tetrahedra to non-spherical and polydisperse molecules in (C70) x (C60)1– x (SnI4)2. Nano Lett. 2021, 21, 4753–4756.

[10]

Li, Y. W.; Higaki, T.; Du, X. S.; Jin, R. C. Chirality and surface bonding correlation in atomically precise metal nanoclusters. Adv. Mater. 2020, 32, 1905488.

[11]

Zhu, Y. F.; Guo, J.; Qiu, X. Y.; Zhao, S. L.; Tang, Z. Y. Optical activity of chiral metal nanoclusters. Acc. Mater. Res. 2021, 2, 21–35.

[12]

Zhou, B. W.; Zhang, S. Q.; Zhao, L. Progress in optical properties of chiral metal clusters: Circular dichroism and circularly polarized luminescence. Mater. Chem. Front. 2023, 7, 6389–6410.

[13]

Kumar, D. K.; Steed, J. W. Supramolecular gel phase crystallization: Orthogonal self-assembly under non-equilibrium conditions. Chem. Soc. Rev. 2014, 43, 2080–2088.

[14]

Li, J. R.; Li, H. G.; Hao, J. C. Fullerene superlattices containing charge transfer complexes for an improved nonlinear optical performance. Nanoscale 2022, 14, 2344–2351.

[15]

Li, J. R.; Zhuang, K. P.; Mao, Y. F.; Liu, C.; Pang, M. H.; Li, H. G. Nanoarchitectonics of mesoporous carbon from C60/PCBM hybrid crystals for supercapacitor. Carbon 2023, 201, 449–459.

[16]

Zhang, L. W.; Zhou, S. J.; Chen, M. J.; Yin, K. Y.; Li, H. G. Hierarchically-organized C60 crystals obtained from a liquid/liquid interfacial precipitation method by using 1,2,3,4-tetrahydronaphthalene as a solvent. New Carbon Mater. 2019, 34, 238–246.

[17]

Han, Z.; Dong, X. Y.; Luo, P.; Li, S.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.

[18]

Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60) n ]3– ( n = 1–9). ACS Nano 2018, 12, 2415–2425.

[19]

Ahmed, G. H.; Parida, M. R.; Tosato, A.; AbdulHalim, L. G.; Usman, A.; Alsulami, Q. A.; Murali, B.; Alarousu, E.; Bakr, Q. M.; Mohammed, O. F. The impact of electrostatic interactions on ultrafast charge transfer at Ag29 nanoclusters-fullerene and CdTe quantum dots-fullerene interfaces. J. Mater. Chem. C 2016, 4, 2894–2900.

[20]

Ariga, K. Liquid interfacial nanoarchitectonics: Molecular machines, organic semiconductors, nanocarbons, stem cells, and others. Curr. Opin. Colloid Interface Sci. 2023, 63, 101656.

[21]

Yannoni, C. S.; Johnson, R. D.; Meijer, G.; Bethune, D. S.; Salem, J. R. 13C NMR study of the C60 cluster in the solid state: Molecular motion and carbon chemical shift anisotropy. J. Phys. Chem. 1991, 95, 9–10.

[22]

Tycko, R.; Haddon, R. C.; Dabbagh, G.; Glarum, S. H.; Douglass, D. C.; Mujsce, A. M. Solid-state magnetic resonance spectroscopy of fullerenes. J. Phys. Chem. 1991, 95, 518–520.

[23]

Geiser, U.; Kumar, S. K.; Savall, B. M.; Harried, S. S.; Carlson, K. D.; Mobley, P. R.; Wang, H. H.; Williams, J. M.; Botto, R. E. Discrete layers of ordered fullerene C60 molecules in the cocrystal C60·CH2I2·C6H6: Synthesis, crystal structure, and 13C NMR properties. Chem. Mater. 1992, 4, 1077–1082.

[24]

Roy, X.; Lee, C. H.; Crowther, A. C.; Schenck, C. L.; Besara, T.; Lalancette, R. A.; Siegrist, T.; Stephens, P. W.; Brus, L. E.; Kim, P. et al. Nanoscale atoms in solid-state chemistry. Science 2013, 341, 157–160.

[25]

Ong, W. L.; O’Brien, E. S.; Dougherty, P. S. M.; Paley, D. W.; Fred Higgs III, C.; McGaughey, A. J. H.; Malen, J. A.; Roy, X. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. Nat. Mater. 2017, 16, 83–88.

[26]

Yang, J. J.; Russell, J. C.; Tao, S. S.; Lessio, M.; Wang, F. F.; Hartnett, A. C.; Peurifoy, S. R.; Doud, E. A.; O’Brien, E. S.; Gadjieva, N. et al. Superatomic solid solutions. Nat. Chem. 2021, 13, 607–613.

[27]

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

Nano Research
Cite this article:
Li J, Bi Y, Liu Z, et al. Chiral metal nanocluster within nanoarchitecture of fullerene C60: Chirality transfer and improvement of nonlinear optical property. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6913-x
Topics:

128

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 June 2024
Revised: 24 July 2024
Accepted: 25 July 2024
Published: 22 August 2024
© Tsinghua University Press 2024
Return