AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Multi-site anchoring lead-halide octahedral by benzylphosphonic acid to regulate phase distribution for efficient PeLEDs

Jiahao Tang1,§Yifei Wang1,§Hengyang Xiang1( )Run Wang1Kun Zhang1Xinyi Lv1Xinrui Chen1Ziqing Xu1Zhesheng Chen1Lei Wang2( )Aidi Zhang3An Xie4( )Haibo Zeng1( )
MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Engineering Research Center of Functional Polymer Membrane Materials of Jiangsu Province, Nanjing Bready Advanced Materials Technology Co., Ltd., Nanjing 211103, China
School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China

§ Jiahao Tang and Yifei Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Quasi-two-dimensional perovskite light-emitting diodes (quasi-2D PeLEDs) are emerging as high-potential candidates for new generation of wide-color gamut displays due to their simple, low-cost solution process, and high color purity. However, the luminescence performance of quasi-2D perovskite films is severely limited by dispersed phase distribution and excessive defect density, which are caused by excessive diffusion of nucleation sites during the perovskite growth stage. Here, the benzylphosphonic acid (BPA) molecule, owing to its strong P–O–Pb bond energy sites and strong electronegativity to PEA+, can aggregate lead-halide octahedron to grow high-dimensional phases, avoiding scattered low-dimensional phases (n = 1). The continuous gradient phase distribution will be beneficial to smooth carrier injection and effectively suppress the leakage current in PeLEDs. Meanwhile, the introduction of phosphonic acid groups will fill the vacancies of Pb ions and reduce non-radiative recombination. As a result, the maximum external quantum efficiency (EQE) of PeLEDs can be increased from 8% to 20.6% with a 514 nm light emission and a 21 nm full-width half maximum, and the device lifetime (T50) is nearly 6-fold of the pristine sample. In addition, this strategy is also suitable for other wavelength. For example, in blue light, performance improvement is also realized that the maximum EQE of 8% and the luminance increased from 1045 to 5264 cd/m2. These results provide a feasible strategy to regulate the phase distribution and passivate the defects of quasi-2D perovskites.

Electronic Supplementary Material

Download File(s)
6914_ESM.pdf (1.9 MB)

References

[1]

Quan, L. N.; Rand, B. P.; Friend, R. H.; Mhaisalkar, S. G.; Lee, T. W.; Sargent, E. H. Perovskites for next-generation optical sources. Chem. Rev. 2019, 119, 7444–7477.

[2]

Jiang, J. Y.; Zhang, S.; Shan, Q. S.; Yang, L. X.; Ren, J.; Wang, Y. J.; Jeon, S.; Xiang, H. Y.; Zeng, H. B. High-color-rendition white QLEDs by balancing red, green and blue centres in eco-friendly ZnCuGaS: In@ZnS quantum dots. Adv. Mater. 2024, 36, 2304772.

[3]

Liu, X. K.; Xu, W. D.; Bai, S.; Jin, Y. Z.; Wang, J. P.; Friend, R. H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21.

[4]
Shan, Q. S.; Dong, Y. H.; Xiang, H. Y.; Yan, D. N.; Hu, T. J.; Yuan, B. C.; Zhu, H.; Wang, Y. F.; Zeng, H. B. Perovskite quantum dots for the next-generation displays: Progress and prospect. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202401284.
[5]

Zhou, Y. H.; Fang, T.; Liu, G. Y.; Xiang, H. Y.; Yang, L. X.; Li, Y.; Wang, R.; Yan, D. N.; Dong, Y. H.; Cai, B. et al. Perovskite anion exchange: a microdynamics model and a polar adsorption strategy for precise control of luminescence color. Adv. Funct. Mater. 2021, 31, 2106871.

[6]

Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248.

[7]

Bai, W. H.; Xuan, T. T.; Zhao, H. Y.; Dong, H. R.; Cheng, X. R.; Wang, L.; Xie, R. J. Perovskite light-emitting diodes with an external quantum efficiency exceeding 30%. Adv. Mater. 2023, 35, 2302283.

[8]

Zhang, J. B.; Zhang, T. K.; Ma, Z. Z.; Yuan, F. L.; Zhou, X.; Wang, H. Y.; Liu, Z.; Qing, J.; Chen, H. T.; Li, X. J. et al. A multifunctional “halide-equivalent” anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%. Adv. Mater. 2023, 35, 2209002.

[9]

Yuan, S.; Dai, L. J.; Sun, Y. Q.; Auras, F.; Zhou, Y. H.; An, R. Z.; Liu, Y.; Ding, C. F.; Cassidy, C.; Tang, X. et al. Efficient blue electroluminescence from reduced-dimensional perovskites. Nat. Photonics 2024, 18, 425–431.

[10]

Wang, R.; Xiang, H. Y.; Li, Y.; Zhou, Y. H.; Shan, Q. S.; Su, Y. Q.; Li, Z.; Wang, Y. J.; Zeng, H. B. Minimizing energy barrier in intermediate connection layer for monolithic tandem WPeLEDs with wide color gamut. Adv. Funct. Mater. 2023, 33, 2215189.

[11]

Wang, H. L.; Pan, Y. Y.; Li, X. G.; Shi, Z. J.; Zhang, X.; Shen, T. Y.; Tang, Y.; Fan, W. Y.; Zhang, Y. C.; Liu, F. C. et al. Band alignment boosts over 17% efficiency quasi-2D perovskite solar cells via bottom-side phase manipulation. ACS Energy Lett. 2022, 7, 3187–3196.

[12]

Ren, M.; Cao, S.; Zhao, J. L.; Zou, B. S.; Zeng, R. S. Advances and challenges in two-dimensional organic–inorganic hybrid perovskites toward high-performance light-emitting diodes. Nano-Micro Lett. 2021, 13, 163.

[13]

Cheng, L.; Jiang, T.; Cao, Y.; Yi, C.; Wang, N. N.; Huang, W.; Wang, J. P. Multiple-quantum-well perovskites for high-performance light-emitting diodes. Adv. Mater. 2020, 32, 1904163.

[14]

Wang, Y. F.; Xiang, H. Y.; Zhou, Y. H.; Li, X. L.; Wang, R.; Xu, B.; Liu, J.; Li, W. J.; Xiang, Z. H.; Zeng, H. B. Perovskite light emitting diodes using covalent organic polymers as hole injection layers. Chin. J. Lumin. 2022, 43, 1574–1582.

[15]

Jiang, Y. Z.; Wei, J. L.; Yuan, M. J. Energy-funneling process in quasi-2D perovskite light-emitting diodes. J. Phys. Chem. Lett. 2021, 12, 2593–2606.

[16]

Jiang, Y. Z.; Yuan, J.; Ni, Y. X.; Yang, J. E.; Wang, Y.; Jiu, T. G.; Yuan, M. J.; Chen, J. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2018, 2, 1356–1368.

[17]

Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

[18]

Xu, Q.; Wang, R.; Jia, Y. L.; He, X. L.; Deng, Y. H.; Yu, F. X.; Zhang, Y.; Ma, X. J.; Chen, P.; Zhang, Y. et al. Highly efficient quasi-two dimensional perovskite light-emitting diodes by phase tuning. Org. Electron. 2021, 98, 106295.

[19]

Bao, Z. Q.; Guo, X. Y.; Sun, K.; Ou, J. F.; Lv, Y.; Zou, D. Y.; Li, Y. T.; Song, L.; Liu, X. Y. Morphology and luminescence regulation for CsPbBr3 perovskite light-emitting diodes by controlling growth of low-dimensional Phases. ACS Appl. Mater. Interfaces 2022, 14, 56374–56383.

[20]

Jamaludin, N. F.; Yantara, N.; Febriansyah, B.; Tay, Y. B.; Muhammad, B. T.; Laxmi, S.; Lim, S. S.; Sum, T. C.; Mhaisalkar, S.; Mathews, N. Additives in halide perovskite for blue-light-emitting diodes: Passivating agents or crystallization modulators. . ACS Energy Lett. 2021, 6, 4265–4272.

[21]

Yang, X. L.; Zhang, X. W.; Deng, J. X.; Chu, Z. M.; Jiang, Q.; Meng, J. H.; Wang, P. Y.; Zhang, L. Q.; Yin, Z. G.; You, J. B. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.

[22]

Xie, H. B.; Wang, Z. W.; Chen, Z. H.; Pereyra, C.; Pols, M.; Galkowski, K.; Anaya, M.; Fu, S.; Jia, X. Y.; Tang, P. Y. et al. Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 2021, 5, 1246–1266.

[23]

Yu, Z. K.; Choi, Y.; Shen, X. Y.; Jang, J. W.; Jeong, W. H.; Li, Y. Q.; Choi, H.; Ahn, H.; Park, S. H.; Choi, H. et al. Phosphonic acid based bifunctional additive for high-performance blue perovskite light-emitting diodes. Nano Energy 2024, 125, 109552.

[24]

Guo, Z. Y.; Zhang, Y.; Wang, B. Z.; Wang, L. D.; Zhou, N.; Qiu, Z. W.; Li, N. X.; Chen, Y. H.; Zhu, C.; Xie, H. P. et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater. 2021, 33, 2102246.

[25]

Liu, Z.; Qiu, W. D.; Peng, X. M.; Sun, G. W.; Liu, X. Y.; Liu, D. H.; Li, Z. C.; He, F. R.; Shen, C. Y.; Gu, Q. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 2021, 33, 2103268.

[26]

Yang, X. L.; Chu, Z. M.; Meng, J. H.; Yin, Z. G.; Zhang, X. W.; Deng, J. X.; You, J. B. Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite-based light-emitting diodes. J. Phys. Chem. Lett. 2019, 10, 2892–2897.

[27]

Jiang, N. Z.; Wang, Z. B.; Zheng, Y. H.; Guo, Q.; Niu, W. F.; Zhang, R. D.; Huang, F.; Chen, D. Q. 2D/3D heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano Energy 2022, 97, 107181.

[28]

Pang, P. Y.; Jin, G. R.; Liang, C.; Wang, B. Z.; Xiang, W.; Zhang, D. L.; Xu, J. W.; Hong, W.; Xiao, Z. W.; Wang, L. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 2020, 14, 11420–11430.

[29]

Yang, Y.; Yang, X. L.; He, L. H.; Gao, J. L.; Lian, Y. J.; Yang, X. H. Quasi-two-dimensional sky-blue perovskite light-emitting devices enhanced by hypophosphorous acid incorporation. Acta Opt. Sin. 2021, 41, 1716001.

[30]

Xing, J.; Zhao, Y. B.; Askerka, M.; Quan, L. N.; Gong, X. W.; Zhao, W. J.; Zhao, J. X.; Tan, H. R.; Long, G. K.; Gao, L. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 2018, 9, 3541.

[31]

Lee, H.; Kwon, S.; Min, J.; Jin, S. M.; Hwang, J. H.; Lee, E.; Lee, W. B.; Park, M. J. Thermodynamically stable plumber’s nightmare structures in block copolymers. Science 2024, 383, 70–76.

[32]

Wang, J. Z.; Wang, T. How to interpret infrared (IR) spectra. Univ. Chem. 2016, 31, 90–97.

[33]

Li, N. X.; Luo, Y. Q.; Chen, Z. H.; Niu, X. X.; Zhang, X.; Lu, J. Z.; Kumar, R.; Jiang, J. K.; Liu, H. F.; Guo, X. et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule 2020, 4, 1743–1758.

[34]

Li, H.; Di, H. P.; Wang, X. A.; Ren, Z. F.; Lu, M.; Liu, A. A.; Yang, X. M.; Wang, N. L.; Zhao, Y. Y.; Li, B. H. Diffusion effect on the decay of time-resolved photoluminescence under low illumination in lead halide perovskites. Sci. China Phys. Mech. Astron. 2023, 66, 287311.

[35]

Chen, W. J.; Li, D.; Chen, X.; Chen, H. Y.; Liu, S.; Yang, H. D.; Li, X. Q.; Shen, Y. X.; Ou, X. M.; Yang, Y. et al. Surface reconstruction for stable monolithic all-inorganic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 2022, 32, 2109321.

[36]

Zhang, L.; Sun, C. J.; He, T. W.; Jiang, Y. Z.; Wei, J. L.; Huang, Y. M.; Yuan, M. J. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci. Appl. 2021, 10, 61.

[37]

Qin, Y.; Zhong, H. J.; Intemann, J. J.; Leng, S. F.; Cui, M. H.; Qin, C. C.; Xiong, M.; Liu, F.; Jen, A. K. Y.; Yao, K. Coordination engineering of single-crystal precursor for phase control in ruddlesden-popper perovskite solar cells. Adv. Energy Mater. 2020, 10, 1904050.

[38]

Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

[39]

Lei, L.; Seyitliyev, D.; Stuard, S.; Mendes, J.; Dong, Q.; Fu, X. Y.; Chen, Y. A.; He, S. L.; Yi, X. P.; Zhu, L. P. et al. Efficient energy funneling in quasi-2D perovskites: From light emission to lasing. Adv. Mater. 2020, 32, 1906571.

[40]

Zhang, T. K.; Long, M. Z.; Yan, K. Y.; Qin, M. C.; Lu, X. H.; Zeng, X. L.; Cheng, C. M.; Wong, K. S.; Liu, P. Y.; Xie, W. G. et al. Crystallinity preservation and ion migration suppression through dual ion exchange strategy for stable mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700118.

[41]

Zhang, F. G.; Cong, J. Y.; Li, Y. Y.; Bergstrand, J.; Liu, H. C.; Cai, B.; Hajian, A.; Yao, Z. Y.; Wang, L. Q.; Hao, Y. et al. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy 2018, 53, 405–414.

[42]

Liu, F. Z.; Qin, X. S.; Han, B.; Chan, C. C. S.; Ma, C.; Leung, T. L.; Chen, W.; He, Y. L.; Lončarić, I.; Grisanti, L. et al. Enhanced light emission performance of mixed cation perovskite films—The effect of solution stoichiometry on crystallization. Adv. Opt. Mater. 2021, 9, 2100393.

[43]

Yang, K. Y.; Mao, J. L.; Zheng, J. P.; Yu, Y. S.; Xu, B. L.; Zhang, Q. K.; Weng, X. K.; Lin, Q. X.; Guo, T. L.; Li, F. S. Achieving efficient light-emitting diodes by controlling phase distribution of quasi-2D perovskites. Adv. Electron. Mater 2023, 9, 2201199.

[44]

Mak, C. H.; Huang, X. Y.; Liu, R. G.; Tang, Y. Q.; Han, X.; Ji, L.; Zou, X. L.; Zou, G. Z.; Hsu, H. Y. Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy 2020, 73, 104752.

[45]

Thiesbrummel, J.; Le Corre, V. M.; Peña-Camargo, F.; Perdigón-Toro, L.; Lang, F.; Yang, F. J.; Grischek, M.; Gutierrez-Partida, E.; Warby, J.; Farrar, M. D. et al. Universal current losses in perovskite solar cells due to mobile ions. Adv. Energy Mater. 2021, 11, 2101447.

[46]

Hooge, F. N. 1/ f noise sources. IEEE Trans. Electron Devices 1994, 41, 1926–1935.

[47]

Landi, G.; Neitzert, H. C.; Barone, C.; Mauro, C.; Lang, F.; Albrecht, S.; Rech, B.; Pagano, S. Correlation between electronic defect states distribution and device performance of perovskite solar cells. Adv. Sci. 2017, 4, 1700183.

[48]

Kumar, A.; Bansode, U.; Ogale, S.; Rahman, A. Understanding the thermal degradation mechanism of perovskite solar cells via dielectric and noise measurements. Nanotechnology 2020, 31, 365403.

[49]

Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

[50]

Blauth, C.; Mulvaney, P.; Hirai, T. Negative capacitance as a diagnostic tool for recombination in purple quantum dot LEDs. J. Appl. Phys. 2019, 125, 195501.

[51]

Ehrenfreund, E.; Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, N. S. Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism. Appl. Phys. Lett. 2007, 91, 012112.

[52]
Wang, R.; Xiang, H. Y.; Zhang, C.; Li, H. Y.; Su, Y. Q.; Chen, Q.; Bao, Q. Y.; Li, G. R.; Zeng, H. B. A record-breaking low turn-on voltage blue QLED via reducing built-in potential. Nano Res., in press, https://doi.org/10.1007/s12274-024-6570-0.
Nano Research
Cite this article:
Tang J, Wang Y, Xiang H, et al. Multi-site anchoring lead-halide octahedral by benzylphosphonic acid to regulate phase distribution for efficient PeLEDs. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6914-9
Topics:

216

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 June 2024
Revised: 25 July 2024
Accepted: 25 July 2024
Published: 21 August 2024
© Tsinghua University Press 2024
Return