AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Foamed microemulsion nanodroplets loaded with chlorin e6 for epidermal-targeted treatment against psoriasis

Xiaolu Ma1,§Qiong Bian1,§Yihua Xu1Jingyi Hu1Weitong Hu1Ruxuan Wang1Yunting Zhang1Yuxian Ye1Xiaoxia Sheng3Tianyuan Zhang1( )Jianqing Gao1,2( )
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China
Hangzhou SoliPharma Co., Ltd. Hangzhou 310058, China

§ Xiaolu Ma and Qiong Bian contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Psoriasis is a chronic skin disease characterized by the hyperproliferation of keratinocytes and an overactive autoimmune response. Photodynamic therapy (PDT) has been established as a promising intervention for alleviating psoriasis. However, the current transdermal delivery of photosensitizers is inefficient and imprecise. In this study, we developed a foamed microemulsion nanodroplets system containing chlorin e6 (Ce6 FM), exhibiting precise epidermal targeting and retention, which targeted the aberrantly proliferating epidermal cells at psoriatic skin lesions and avoided the damage to the normal cutaneous cells. Upon application in a psoriatic mouse model, Ce6 FM efficiently induced keratinocyte apoptosis by generating reactive oxygen species under laser. Furthermore, Ce6 FM-based PDT activated the cyclooxygenase-2-induced immunosuppressive pathway in keratinocytes, resulting in the amelioration of the autoimmune microenvironment in psoriatic skin. Additionally, Ce6 FM-based PDT did not induce skin damage or atrophy associated with non-targeted halometasone treatment. Overall, Ce6 FM-based PDT holds promise as an effective, safe and compliant strategy for psoriasis treatment.

Electronic Supplementary Material

Download File(s)
6916_ESM.pdf (2.6 MB)

References

[1]

Lowes, M. A.; Bowcock, A. M.; Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873.

[2]

Parisi, R.; Iskandar, I. Y. K.; Kontopantelis, E.; Augustin, M.; Griffiths, C. E. M.; Ashcroft, D. M. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020, 369, m1590.

[3]

Murphy, G.; Reich, K. In touch with psoriasis: Topical treatments and current guidelines. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 3–8.

[4]

Menter, A.; Gottlieb, A.; Feldman, S. R.; Van Voorhees, A. S.; Leonardi, C. L.; Gordon, K. B.; Lebwohl, M.; Koo, J. Y. M.; Elmets, C. A.; Korman, N. J. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 2008, 58, 826–850.

[5]

Dainichi, T.; Kitoh, A.; Otsuka, A.; Nakajima, S.; Nomura, T.; Kaplan, D. H.; Kabashima, K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat. Immunol. 2018, 19, 1286–1298.

[6]

Zhou, X.; Chen, Y. D.; Cui, L.; Shi, Y. L.; Guo, C. Y. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis. 2022, 13, 81.

[7]

Lou, F. Z.; Sun, Y.; Xu, Z. Y.; Niu, L. M.; Wang, Z. K.; Deng, S. Y.; Liu, Z. Y.; Zhou, H.; Bai, J.; Yin, Q. Q. et al. Excessive polyamine generation in keratinocytes promotes self-RNA sensing by dendritic cells in psoriasis. Immunity 2020, 53, 204–216.e10.

[8]

Wan, M. T.; Lin, J. Y. Current evidence and applications of photodynamic therapy in dermatology. Clin. Cosmet. Investig. Dermatol. 2014, 7, 145–163.

[9]

Zhang, P.; Wu, M. X. A clinical review of phototherapy for psoriasis. Lasers Med. Sci. 2018, 33, 173–180.

[10]

Bian, Q.; Huang, L. L.; Xu, Y. H.; Wang, R. X.; Gu, Y. T.; Yuan, A. R.; Ma, X. L.; Hu, J. Y.; Rao, Y. F.; Xu, D. H. et al. A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect. ACS Nano 2021, 15, 19468–19479.

[11]

Campos Chaves Lamarque, G.; Cusicanqui Méndez, D. A.; Arruda Matos, A.; José Dionísio, T.; Andrade Moreira Machado, M. A.; Magalhães, A. C.; Cardoso Oliveira, R.; Cruvinel, T. Cytotoxic effect and apoptosis pathways activated by methylene blue-mediated photodynamic therapy in fibroblasts. Photodiagn. Photodyn. Ther. 2020, 29, 101654.

[12]

Rozman, B.; Gasperlin, M.; Tinois-Tessoneaud, E.; Pirot, F.; Falson, F. Simultaneous absorption of vitamins c and e from topical microemulsions using reconstructed human epidermis as a skin model. Eur. J. Pharm. Biopharm. 2009, 72, 69–75.

[13]

Chen, L. H.; Alrobaian, M.; Afzal, O.; Kazmi, I.; Panda, S. K.; Alfawaz Altamimi, A. S.; Al-Abbasi, F. A.; Almalki, W. H.; Katouah, H. A.; Singh, T. et al. Crotamiton-loaded tea tree oil containing phospholipid-based microemulsion hydrogel for scabies treatment: In vitro, in vivo evaluation, and dermatokinetic studies. Drug Deliv. 2021, 28, 1972–1981.

[14]

Heuschkel, S.; Goebel, A.; Neubert, R. H. H. Microemulsions-modern colloidal carrier for dermal and transdermal drug delivery. J. Pharm. Sci. 2008, 97, 603–631.

[15]

Karasulu, H. Y. Microemulsions as novel drug carriers: The formation, stability, applications and toxicity. Expert Opin. Drug Deliv. 2008, 5, 119–135.

[16]

Williams, A. C.; Barry, B. W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012, 64, 128–137.

[17]

Patel, M. R.; Patel, R. B.; Parikh, J. R.; Solanki, A. B.; Patel, B. G. Investigating effect of microemulsion components: In vitro permeation of ketoconazole. Pharm. Dev. Technol. 2011, 16, 250–258.

[18]

Sasaki, K.; Wake, K.; Watanabe, S. Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 ghz to 110 ghz. Phys. Med. Biol. 2014, 59, 4739–4747.

[19]

Arzhavitina, A.; Steckel, H. Foams for pharmaceutical and cosmetic application. Int. J. Pharm. 2010, 394, 1–17.

[20]

Hu, C. J.; Zhao, X. L.; Li, J. Z.; Kang, S. M.; Yang, C. R.; Jin, Y. H.; Liu, D.; Chen, D. W. Preparation and characterization of β-elemene-loaded microemulsion. Drug Dev. Ind. Pharm. 2011, 37, 765–774.

[21]

Bayless, S.; Travers, J. B.; Sahu, R. P.; Rohan, C. A. Inhibition of photodynamic therapy induced-immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre-cancerous lesions (Review). Oncol. Lett. 2021, 22, 664.

[22]

Zhang, Q. W.; Yao, Y. X.; Konger, R. L.; Sinn, A. L.; Cai, S. B.; Pollok, K. E.; Travers, J. B. UVB radiation-mediated inhibition of contact hypersensitivity reactions is dependent on the platelet-activating factor system. J. Invest. Dermatol. 2008, 128, 1780–1787.

[23]

Moreno, M. A.; Ballesteros, M. P.; Frutos, P.; Lastres, J. L.; Castro, D. Comparison of UV spectrophotometric and LC methods for the determination of nortriptyline hydrochloride in polysorbate 80 based oil/water (o/w) microemulsions. J. Pharm. Biomed. Anal. 2000, 22, 287–294.

[24]

Neu, S. D.; Strzepa, A.; Martin, D.; Sorci-Thomas, M. G.; Pritchard, K. A. Jr.; Dittel, B. N. Myeloperoxidase inhibition ameliorates plaque psoriasis in mice. Antioxidants. 2021, 10, 1338.

[25]

Kennedy, G. L.; Short, R. D. Biological effects of acetamide, formamide, and their monomethyl and dimethyl derivatives. CRC Crit. Rev. Toxicol. 1986, 17, 129–182.

[26]

Guttoff, M.; Saberi, A. H.; Mcclements, D. J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem. 2015, 171, 117–122.

[27]

Piret, J.; Désormeaux, A.; Cormier, H.; Lamontagne, J.; Gourde, P.; Juhász, J.; Bergeron, M. G. Sodium lauryl sulfate increases the efficacy of a topical formulation of foscarnet against herpes simplex virus type 1 cutaneous lesions in mice. Antimicrob. Agents Chemother. 2000, 44, 2263–2270.

[28]

Alper, M.; Kavak, A.; Parlak, A. H.; Demirci, R.; Belenli, I.; Yesildal, N. Measurement of epidermal thickness in a patient with psoriasis by computer-supported image analysis. Braz J. Med. Biol. Res. 2004, 36, 111–117.

[29]

Sintov, A. C.; Shapiro, L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J. Control. Release 2004, 95, 173–183.

[30]

Fernández-Campos, F.; Clares Naveros, B.; López Serrano, O.; Alonso Merino, C.; Calpena Campmany, A. C. Evaluation of novel nystatin nanoemulsion for skin candidosis infections. Mycoses 2013, 56, 70–81.

[31]

Rai, V. K.; Mishra, N.; Yadav, K. S.; Yadav, N. P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018, 270, 203–225.

[32]

Panchagnula, R.; Desu, H.; Jain, A.; Khandavilli, S. Feasibility studies of dermal delivery of paclitaxel with binary combinations of ethanol and isopropyl myristate: Role of solubility, partitioning and lipid bilayer perturbation. Il Farmaco 2005, 60, 894–899.

[33]

Youenang Piemi, M. P.; Korner, D.; Benita, S.; Marty, J. P. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J. Control. Release 1999, 58, 177–187.

[34]

Benaouda, F.; Jones, S. A.; Martin, G. P.; Brown, M. B. Localized epidermal drug delivery induced by supramolecular solvent structuring. Mol. Pharm. 2016, 13, 65–72.

[35]

Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U. F. Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinol. 2009, 1, 197–206.

[36]

Iqbal, B.; Ali, J.; Baboota, S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol. 2018, 57, 646–660.

[37]

Lo Presti, A.; Montoya, N. A.; Criscuolo, V.; Khan, G.; Khan, U.; Vecchione, R.; Falconi, C. Fundamentals of skin bioimpedances. Adv. Mater. 2023, 35, 2302127.

[38]

Kessel, D. Photodynamic therapy: Apoptosis, paraptosis and beyond. Apoptosis 2020, 25, 611–615.

[39]

Alifu, N.; Dong, X. B.; Li, D. Y.; Sun, X. H.; Zebibula, A.; Zhang, D. Q.; Zhang, G. X.; Qian, J. Aggregation-induced emission nanoparticles as photosensitizer for two-photon photodynamic therapy. Mater. Chem. Front. 2017, 1, 1746–1753.

[40]

Luo, M. Y.; Li, H. X.; Han, D. H.; Yang, K. Z.; Kang, L. Inhibition of autophagy enhances apoptosis induced by ce6-photodynamic therapy in human colon cancer cells. Photodiagn. Photodyn. Ther. 2021, 36, 102605.

[41]

De Vos, P.; Saladin, R.; Auwerx, J.; Staels, B. Induction of ob gene expression by corticosteroids is accompanied by body weight loss and reduced food intake. J. Biol. Chem. 1995, 270, 15958–15961.

[42]

Barnes, P. J. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin. Sci. 1998, 94, 557–572.

[43]

Albanesi, C.; Pastore, S. Pathobiology of chronic inflammatory skin diseases: Interplay between keratinocytes and immune cells as a target for anti-inflammatory drugs. Curr. Drug Metab. 2010, 11, 210–227.

[44]

Schäfer-Korting, M.; Schmid, M. H.; Korting, H. C. Topical glucocorticoids with improved risk-benefit ratio. Drug Saf. 1996, 14, 375–385.

[45]

Palombo, R.; Savini, I.; Avigliano, L.; Madonna, S.; Cavani, A.; Albanesi, C.; Mauriello, A.; Melino, G.; Terrinoni, A. Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death Dis. 2016, 7, e2344.

[46]

Xi, L.; Han, Y. F.; Liu, C.; Liu, Y. H.; Wang, Z. P.; Wang, R. B.; Zheng, Y. Sonodynamic therapy by phase-transition nanodroplets for reducing epidermal hyperplasia in psoriasis. J. Control. Release 2022, 350, 435–447.

[47]

Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021, 397, 754–766.

[48]

Owczarczyk-Saczonek, A.; Czerwińska, J.; Placek, W. The role of regulatory t cells and anti-inflammatory cytokines in psoriasis. Acta Dermatovenerol. Alp. Pannonica Adriat. 2018, 27, 17–23.

[49]

Rubtsov, Y. P.; Rasmussen, J. P.; Chi, E. Y.; Fontenot, J.; Castelli, L.; Ye, X.; Treuting, P.; Siewe, L.; Roers, A.; Henderson, W. R. Jr. et al. Regulatory t cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 2008, 28, 546–558.

[50]

Zenz, R.; Eferl, R.; Kenner, L.; Florin, L.; Hummerich, L.; Mehic, D.; Scheuch, H.; Angel, P.; Tschachler, E.; Wagner, E. F. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of jun proteins. Nature 2005, 437, 369–375.

[51]

Niculet, E.; Bobeica, C.; Tatu, A. L. Glucocorticoid-induced skin atrophy: The old and the new. Clin. Cosmet. Inv. Derm. 2020, 13, 1041–1050.

Nano Research
Cite this article:
Ma X, Bian Q, Xu Y, et al. Foamed microemulsion nanodroplets loaded with chlorin e6 for epidermal-targeted treatment against psoriasis. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6916-7
Topics:

152

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 May 2024
Revised: 25 July 2024
Accepted: 26 July 2024
Published: 22 August 2024
© Tsinghua University Press 2024
Return