Photodynamic therapy (PDT) and ferroptosis therapy have received extensive attention in breast cancer treatment. PDT induced apoptosis of tumor cells by producing a large amount of reactive oxygen species (ROS) under laser irradiation. Differently, ferroptosis therapy exerts its antitumor effect by inducing excessive accumulation of lipid peroxides on tumor cell membranes. Based on that, ROS produced by PDT may promote ferroptosis in tumor cells, and ferroptosis therapy is expected eliminate apoptosis-resistant tumor cells. Therefore, a synergistic ferroptosis-photodynamic therapy will be more effective and more potential in breast cancer treatment. Considering PDT has the characteristic of producing ROS, and neutrophil has a natural tendency to ROS, a neutrophil-mimetic hybrid liposome (CR-NML) was designed for co-delivery of the photosensitizer Ce6 and the ferroptosis inducer RSL3. CR-NML targeted tumor through the ROS tendency of neutrophil and the enhanced permeability and retention (EPR) effect of liposome, then induced both apoptosis and ferroptosis in tumor cells, which increased ROS level and finally realized ROS cascade amplification. The synergistic ferroptosis-photodynamic therapy demonstrated significant therapeutic efficacy in 4T1 tumor bearing mice, which provided a promising strategy for breast cancer treatment.
Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.
Lahart, I. M.; Metsios, G. S.; Nevill, A. M.; Carmichael, A. R. Physical activity, risk of death and recurrence in breast cancer survivors: A systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015, 54, 635–654.
Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281.
Gunaydin, G.; Gedik, M. E.; Ayan, S. Photodynamic therapy for the treatment and diagnosis of cancer-a review of the current clinical status. Front. Chem. 2021, 9, 686303.
Gustalik, J.; Aebisher, D.; Bartusik-Aebisher, D. Photodynamic therapy in breast cancer treatment. J. Appl. Biomed. 2022, 20, 98–105.
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107.
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. L. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296.
Jiang, X. J.; Stockwell, B. R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282.
Yan, B.; Ai, Y. W.; Sun, Q.; Ma, Y.; Cao, Y.; Wang, J. W.; Zhang, Z. Y.; Wang, X. D. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell 2021, 81, 355–369.e10.
Sui, S.; Xu, S. P.; Pang, D. Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol. Ther. 2022, 232, 107992.
Huang, Y. P.; Li, X. Y.; Zhang, Z. J.; Xiong, L.; Wang, Y. X.; Wen, Y. Photodynamic therapy combined with ferroptosis is a synergistic antitumor therapy strategy. Cancers (Basel) 2023, 15, 5043.
Zhang, P. F.; Liu, C.; Wu, W. R.; Mao, Y.; Qin, Y. F.; Hu, J.; Hu, J.; Fu, J. J.; Hua, D.; Yin, J. Triapine/Ce6-loaded and lactose-decorated nanomicelles provide an effective chemo-photodynamic therapy for hepatocellular carcinoma through a reactive oxygen species-boosting and ferroptosis-inducing mechanism. Chem. Eng. J. 2021, 425, 131543.
Zhu, T.; Shi, L. L.; Yu, C. Y.; Dong, Y. B.; Qiu, F.; Shen, L. Y.; Qian, Q. H.; Zhou, G. Y.; Zhu, X. Y. Ferroptosis promotes photodynamic therapy: Supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics 2019, 9, 3293–3307.
Sun, S. M.; Shen, J.; Jiang, J. W.; Wang, F. D.; Min, J. X. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct. Target. Ther. 2023, 8, 372.
Teng, K. X.; Niu, L. Y.; Yang, Q. Z. Supramolecular photosensitizer enables oxygen-independent generation of hydroxyl radicals for photodynamic therapy. J. Am. Chem. Soc. 2023, 145, 4081–4087.
Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.
Zhao, Y. N.; Li, A. X.; Jiang, L. D.; Gu, Y. W.; Liu, J. Y. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): A multifunctional nanomaterial for biomedical applications. Biomacromolecules 2021, 22, 3149–3167.
Li, Z.; Yang, G.; Han, L.; Wang, R.; Gong, C. A.; Yuan, Y. F. Sorafenib and triptolide loaded cancer cell-platelet hybrid membrane-camouflaged liquid crystalline lipid nanoparticles for the treatment of hepatocellular carcinoma. J. Nanobiotechnology 2021, 19, 360.
Park, J. W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002, 4, 95.
Chu, D. F.; Dong, X. Y.; Shi, X. T.; Zhang, C. Y.; Wang, Z. J. Neutrophil-based drug delivery systems. Adv. Mater. 2018, 30, 1706245.
Coffelt, S. B.; Wellenstein, M. D.; de Visser, K. E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446.
Gao, M.; Deng, J.; Liu, F.; Fan, A. P.; Wang, Y. J.; Wu, H. Y.; Ding, D.; Kong, D. L.; Wang, Z.; Peer, D. et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019, 223, 119486.
Zong, Q. Y.; Xiao, X.; Li, J. S.; Yuan, Y. Y. Self-boosting stimulus activation of a polyprodrug with cascade amplification for enhanced antitumor efficacy. Biomater. Sci. 2022, 10, 4228–4234.
Dong, P.; Wang, W. X.; Pan, M.; Yu, W. Q.; Liu, Y. H.; Shi, T. H.; Hu, J. L.; Zhou, Y. Z.; Yu, S. Y.; Wang, F. A. et al. Cascaded amplifier nanoreactor for efficient photodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 16075–16083.
Linde, I. L.; Prestwood, T. R.; Qiu, J. T.; Pilarowski, G.; Linde, M. H.; Zhang, X. Y.; Shen, L.; Reticker-Flynn, N. E.; Chiu, D. K. C.; Sheu, L. Y. et al. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 2023, 41, 356–372.e10.
Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175.
Sullivan, L. B.; Gui, D. Y.; Heiden, M. G. V. Altered metabolite levels in cancer: Implications for tumour biology and cancer therapy. Nat. Rev. Cancer 2016, 16, 680–693.
Gorrini, C.; Harris, I. S.; Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947.
Koç, E.; Çelik-Uzuner, S.; Uzuner, U.; Çakmak, R. The detailed comparison of cell death detected by Annexin V-PI counterstain using fluorescence microscope, flow cytometry and automated cell counter in mammalian and microalgae cells. J. Fluoresc. 2018, 28, 1393–1404.
Rajneesh; Pathak, J.; Chatterjee, A.; Singh, S. P.; Sinha, R. P. Detection of reactive oxygen species (ROS) in cyanobacteria using the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Bio. Protoc. 2017, 7, e2545.
Zhang, W. Q.; Ahmed, A.; Cong, H. L.; Wang, S.; Shen, Y. Q.; Yu, B. Application of multifunctional BODIPY in photodynamic therapy. Dyes Pigm. 2021, 185, 108937.
Shui, S. F.; Zhao, Z. L.; Wang, H.; Conrad, M.; Liu, G. Q. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol. 2021, 45, 102056