AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites

Xingru Yang1Yuhang Sheng1Linglong Zhang2Lun Yang3Fangjian Xing1Yunsong Di1Cihui Liu1Fengrui Hu4Xifeng Yang5Guofeng Yang6Yushen Liu7Zhixing Gan1( )
Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, Huangshi 435002, China
College of Engineering and Applied Sciences and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
College of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou 215500, China
School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Jiangnan University, Wuxi 214122, China
Yancheng Polytechnic College, Yancheng 224005, China
Show Author Information

Graphical Abstract

Abstract

Luminescent materials with multi-emission features are difficult to be replicated, which are highly desirable for advanced anti-counterfeiting. Here, we report the pioneering synthesis of Mn2+/Yb3+/Er3+ tri-doped Cs2Ag0.8Na0.2InCl6 double perovskites (MYE-DP), which exhibit photoluminescence (PL) covering from visible to near-infrared (NIR). The PL colors under excitations of 254 and 365 nm are notably different due to the changed relative emission intensities of self-trapped excitons (STEs) and Mn2+ d–d transition. Moreover, under the excitation of a NIR laser, the MYE-DP exhibits upconversion (UC) emissions of Mn2+ and Er3+. After ceasing the excitation, the long-lived trapped electrons can be thermally released to Mn2+ and Er3+ ions, resulting in both visible and NIR afterglow. Based on multi-modal emissions of the MYE-DP, we demonstrate a five-level anti-counterfeiting strategy, which significantly increases the anti-counterfeiting security. In addition, this work provides valuable insights into the energy transfer between STEs, Mn2+, Ln3+, and traps, laying a solid foundation for future development of new lead-free perovskites.

Electronic Supplementary Material

Download File(s)
6918_ESM.pdf (4 MB)

References

[1]

Liu, Y.; Han, F.; Li, F. S.; Zhao, Y.; Chen, M. S.; Xu, Z. W.; Zheng, X.; Hu, H. L.; Yao, J. M.; Guo, T. L. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun. 2019, 10, 2049.

[2]

Fan, Y.; Jin, X. F.; Wang, M. Y.; Gu, Y.; Zhou, J. Y.; Zhang, J. C.; Wang, Z. F. Multimode dynamic photoluminescent anticounterfeiting and encryption based on a dynamic photoluminescent material. Chem. Eng. J. 2020, 393, 124799.

[3]

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

[4]

Liu, J.; Rijckaert, H.; Zeng, M.; Haustraete, K.; Laforce, B.; Vincze, L.; Van Driessche, I.; Kaczmarek, A. M.; Van Deun, R. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Adv. Funct. Mater. 2018, 28, 1707365.

[5]

Yu, X. W.; Zhang, H. Y.; Yu, J. H. Luminescence anti-counterfeiting: From elementary to advanced. Aggregate 2021, 2, 20–34.

[6]

Pei, P. X.; Bai, Y. Q.; Su, J. X.; Yang, Y. Z.; Liu, W. S. Achieving mechano-upconversion-downshifting-afterglow multimodal luminescence in a lanthanide-doped LaCaAl3O7 phosphor for multidimensional anticounterfeiting. Sci. China Mater. 2022, 65, 2809–2817.

[7]

Lei, L.; Wang, Y. B.; Xu, W. X.; Ye, R. G.; Hua, Y. J.; Deng, D. G.; Chen, L.; Prasad, P. N.; Xu, S. Q. Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat. Commun. 2022, 13, 5739.

[8]

Gu, L.; Shi, H. F.; Bian, L. F.; Gu, M. X.; Ling, K.; Wang, X.; Ma, H. L.; Cai, S. Z.; Ning, W. H.; Fu, L. S. et al. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat. Photonics 2019, 13, 406–411.

[9]

Huang, Q. Q.; Gao, H. Q.; Yang, S. M.; Ding, D.; Lin, Z. H.; Ling, Q. D. Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: Advanced anti-counterfeiting and in vivo imaging application. Nano Res. 2020, 13, 1035–1043.

[10]

Huang, Q. Q.; Mei, X. F.; Xie, Z. L.; Wu, D. B.; Yang, S. M.; Gong, W. J.; Chi, Z. G.; Lin, Z. H.; Ling, Q. D. Photo-induced phosphorescence and mechanoluminescence switching in a simple purely organic molecule. J. Mater. Chem. C 2019, 7, 2530–2534.

[11]

Lin, C. J.; Zhuang, Y. X.; Li, W. H.; Zhou, T. L.; Xie, R. J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584–6590.

[12]

Sang, J. K.; Zhou, J. Y.; Zhang, J. C.; Zhou, H.; Li, H. H.; Ci, Z. P.; Peng, S. L.; Wang, Z. F. Multilevel static-dynamic anticounterfeiting based on stimuli-responsive luminescence in a niobate structure. ACS Appl. Mater. Interfaces 2019, 11, 20150–20156.

[13]

Xu, L. M.; Chen, J. W.; Song, J. Z.; Li, J. H.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N.; Zeng, H. B. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes. ACS Appl. Mater. Interfaces 2017, 9, 26556–26564.

[14]

Du, J. H.; Sheng, L.; Xu, Y.; Chen, Q. N.; Gu, C.; Li, M. J.; Zhang, S. X. A. Printable off-on thermoswitchable fluorescent materials for programmable thermally controlled full-color displays and multiple encryption. Adv. Mater. 2021, 33, 2008055.

[15]

Qi, Q. K.; Li, C.; Liu, X. G.; Jiang, S.; Xu, Z. C.; Lee, R.; Zhu, M. Q.; Xu, B.; Tian, W. J. Solid-state photoinduced luminescence switch for advanced anticounterfeiting and super-resolution imaging applications. J. Am. Chem. Soc. 2017, 139, 16036–16039.

[16]

Zhang, D. W.; Zhou, W.; Liu, Q. L.; Xia, Z. G. CH3NH3PbBr3 perovskite nanocrystals encapsulated in lanthanide metal-organic frameworks as a photoluminescence converter for anti-counterfeiting. ACS Appl. Mater. Interfaces 2018, 10, 27875–27884.

[17]

Chen, L.; Chen, Y.; Fu, H. G.; Liu, Y. Reversible emitting anti-counterfeiting ink prepared by anthraquinone-modified β-cyclodextrin supramolecular polymer. Adv. Sci. 2020, 7, 2000803.

[18]

Gao, Z.; Han, Y. F.; Wang, F. Cooperative supramolecular polymers with anthracene-endoperoxide photo-switching for fluorescent anti-counterfeiting. Nat. Commun. 2018, 9, 3977.

[19]

Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

[20]

Wang, H. Y.; Zhou, L.; Yu, H. M.; Tang, X. D.; Xing, C.; Nie, G. C.; Akafzade, H.; Wang, S. Y.; Chen, W. Exploration of room-temperature phosphorescence and new mechanism on carbon dots in a polyacrylamide platform and their applications for anti-counterfeiting and information encryption. Adv. Opt. Mater. 2022, 10, 2200678.

[21]

Shen, C. L.; Lou, Q.; Zang, J. H.; Liu, K. K.; Qu, S. N.; Dong, L.; Shan, C. X. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 2020, 7, 1903525.

[22]

Tan, J.; Li, Q. J.; Meng, S.; Li, Y. C.; Yang, J.; Ye, Y. X.; Tang, Z. K.; Qu, S. N.; Ren, X. D. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv. Mater. 2021, 33, 2006781.

[23]

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

[24]

Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.

[25]

Zhang, F.; Ma, Z. Z.; Shi, Z. F.; Chen, X.; Wu, D.; Li, X. J.; Shan, C. X. Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy Mater. Adv. 2021, 2021, 5198145.

[26]

Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 2017, 8, 772–778.

[27]

Zhou, J.; Xia, Z. G.; Molokeev, M. S.; Zhang, X. W.; Peng, D. S.; Liu, Q. L. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J. Mater. Chem. A 2017, 5, 15031–15037.

[28]

Liu, Y.; Molokeev, M. S.; Xia, Z. G. Lattice doping of lanthanide ions in Cs2AgInCl6 nanocrystals enabling tunable photoluminescence. Energy Mater. Adv. 2021, 2021, 2585274.

[29]

Wang, T. Y.; Zhou, D. L.; Yu, Z. Z.; Zhou, T. T.; Sun, R.; Wang, Y. Q.; Sun, X. M.; Wang, Y.; Shao, Y. Z.; Song, H. W. Eu3+-Bi3+ codoping double perovskites for single-component white-light-emitting diodes. Energy Mater. Adv. 2023, 4, 0024.

[30]

Liu, Y.; Nag, A.; Manna, L.; Xia, Z. G. Lead-free double perovskite Cs2AgInCl6. Angew. Chem., Int. Ed. 2021, 60, 11592–11603.

[31]

Zhao, Y. J.; Yang, X. R.; Yang, L.; Xing, F. J.; Liu, C. H.; Di, Y. S.; Cao, G. Y.; Wei, S. B.; Yang, X. F.; Zhang, X. W. et al. Advanced optical information encryption enabled by polychromatic and stimuli-responsive luminescence of Sb-doped double perovskites. Adv. Sci. 2024, 11, 2308390.

[32]

Zheng, W.; Li, X. L.; Liu, N. Q.; Yan, S.; Wang, X. J.; Zhang, X. Z.; Liu, Y. Q.; Liang, Y. J.; Zhang, Y. H.; Liu, H. Solution-grown chloride perovskite crystal of red afterglow. Angew. Chem., Int. Ed. 2021, 60, 24450–24455.

[33]

Shi, Y. H.; Zhang, X. Z.; Wang, X. J.; Zhang, Y. H. Pure green upconversion from a multicolor downshifting perovskite crystal. Adv. Opt. Mater. 2023, 11, 2202704.

[34]

Zeng, Z. X.; Zhang, G. D.; Wang, Y. S.; Zhang, M.; Cheng, Z. Y.; Lian, H. Z.; Lin, J. Mn2+/Er3+-codoped Cs2AgInCl6 double perovskites with dual emission and photochromism properties for anti-counterfeiting application. Laser Photonics Rev. 2024, 18, 2300983.

[35]

Xu, Z. Q.; Chen, L. H.; Zhang, L. Q.; Jing, S. L.; Zhuang, B.; Xu, W. H.; Chen, D. Q. Yb/Er:Cs2Ag(In/Bi)Cl6 lead-free double perovskite for dual-modal optical temperature sensing. J. Lumin. 2022, 248, 118996.

[36]

Han, X. X.; Song, E. H.; Zhou, B.; Zhang, Q. Y. Color tunable upconversion luminescent perovskite fluoride with long-/short-lived emissions toward multiple anti-counterfeiting. J. Mater. Chem. C 2019, 7, 8226–8235.

[37]

Xiao, Y.; Yan, D. C.; Wu, D. Comment on “bandshift luminescence thermometry using Mn4+:Na4Mg(WO4)3 phosphors”. Chem. Mater. 2020, 32, 9813–9816.

[38]

Wang, X. M.; Meng, W. W.; Liao, W. Q.; Wang, J. B.; Xiong, R. G.; Yan, Y. F. Atomistic mechanism of broadband emission in metal halide perovskites. J. Phys. Chem. Lett. 2019, 10, 501–506.

[39]

Zhuang, Y. X.; Chen, D. R.; Chen, W. J.; Zhang, W. X.; Su, X.; Deng, R. R.; An, Z. F.; Chen, H. M.; Xie, R. J. X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light: Sci. Appl. 2021, 10, 132.

[40]

Song, Y. P.; Lu, M. Y.; Mandl, G. A.; Xie, Y.; Sun, G. T.; Chen, J. B.; Liu, X.; Capobianco, J. A.; Sun, L. N. Energy migration control of multimodal emissions in an Er3+-doped nanostructure for information encryption and deep-learning decoding. Angew. Chem., Int. Ed. 2021, 60, 23790–23796.

[41]

Song, Y. P.; Lu, M. Y.; Xie, Y.; Sun, G. T.; Chen, J. B.; Zhang, H. X.; Liu, X.; Zhang, F.; Sun, L. N. Deep learning fluorescence imaging of visible to NIR-II based on modulated multimode emissions lanthanide nanocrystals. Adv. Funct. Mater. 2022, 32, 2206802.

[42]

Lei, Z. D.; Ling, X.; Mei, Q. S.; Fu, S.; Zhang, J.; Zhang, Y. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles. Adv. Mater. 2020, 32, 1906225.

[43]

Zeng, Z. C.; Huang, B. L.; Wang, X.; Lu, L.; Lu, Q. Y.; Sun, M. Z.; Wu, T.; Ma, T. F.; Xu, J.; Xu, Y. S. et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting. Adv. Mater. 2020, 32, 2004506.

Nano Research
Cite this article:
Yang X, Sheng Y, Zhang L, et al. Five-level anti-counterfeiting based on versatile luminescence of tri-doped double perovskites. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6918-5
Topics:

171

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 June 2024
Revised: 18 July 2024
Accepted: 26 July 2024
Published: 22 August 2024
© Tsinghua University Press 2024
Return