AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A triboelectric nanogenerator-based self-powered long-distance wireless sensing platform for industries and environment monitoring

Chi Zhang1,2Kaihang Zhang1,2Jiaqi Lu1,2Liangquan Xu1,2Jianhui Wu1,2Jie Li1,2Shuting Liu3Weipeng Xuan4Jinkai Chen4Hao Jin1,2( )Shurong Dong1,2Jikui Luo1,2( )
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
International Joint Innovation Center, Zhejiang University, Haining 314400, China
School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
Show Author Information

Graphical Abstract

A triboelectric nanogenerator (TENG) based self-powered long distance wireless sensing system is developed which can be used for smart manufacturing and healthcare. The system has a sensing range of 50 m and is capable of wirelessly monitoring temperature and vibration frequency.

Abstract

Self-powered wireless sensing system is particularly suitable for applications in intelligent manufacturing, smart healthcare etc. as it does not require an external power source. Triboelectric nanogenerator (TENG) is an emerging energy harvester that can be used to power self-powered wireless sensors. The latest achievement in this area is the instantaneous self-powered wireless sensor, where the electric energy generated by the TENG is injected directly into the inductor-capacitor (LC) resonator to generate a decaying oscillating signal with encoded sensing information. However, the frequency is lower (typically < 5 MHz) and the signal transmission distance is short (< 3 m) limited by the near-field magnetic coupling, restricting its widespread applications. In this research, we propose a self-powered long-distance wireless sensing platform which utilizes a surface acoustic wave (SAW) resonator based radio-frequency oscillator to convert TENG energy into a high frequency signal with sensing information encoded. With this system, the sensing signal can be easily transmitted through the antenna for long distance. An optimized system is designed and conditional influences are fully investigated. Results show this self-powered wireless sensor system can perform wireless sensing for force, temperature and vibration at a distance up to 50 m.

Electronic Supplementary Material

Download File(s)
6919_ESM.pdf (1.6 MB)

References

[1]

Farooqui, M. F.; Karimi, M. A.; Salama, K. N.; Shamim, A. 3D-printed disposable wireless sensors with integrated microelectronics for large area environmental monitoring. Adv. Mater. Technol. 2017, 2, 1700051.

[2]

Zhao, K.; Wang, Z. L.; Yang, Y. Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 2016, 10, 9044–9052.

[3]

Prasad, P. Recent trend in wireless sensor network and its applications: A survey. Sens. Rev. 2015, 35, 229–236.

[4]

Onasanya, A.; Lakkis, S.; Elshakankiri, M. Implementing IoT/WSN based smart saskatchewan healthcare system. Wireless Netw. 2019, 25, 3999–4020.

[5]

Wu, F.; Li, X.; Sangaiah, A. K.; Xu, L. L.; Kumari, S.; Wu, L. X.; Shen, J. A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Future Gener. Comput. Syst. 2018, 82, 727–737.

[6]

Catarinucci, L.; de Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M. L.; Tarricone, L. An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2015, 2, 515–526.

[7]

Chen, W. Intelligent manufacturing production line data monitoring system for industrial internet of things. Comput. Commun. 2020, 151, 31–41.

[8]

Davis, J.; Edgar, T.; Porter, J.; Bernaden, J.; Sarli, M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng. 2012, 47, 145–156.

[9]

Queiroz, D. V.; Alencar, M. S.; Gomes, R. D.; Fonseca, I. E.; Benavente-Peces, C. Survey and systematic mapping of industrial wireless sensor networks. J. Network Comput. Appl. 2017, 97, 96–125.

[10]
Rubel, S. I.; Kandil, N.; Hakem, N. Energy efficient hybrid clustering approach in wireless sensor network (WSN). In Proceedings of 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Boston, USA, 2018, pp 125–126.
[11]

Tang, X. L.; Wang, X. H.; Cattley, R.; Gu, F. S.; Ball, A. D. Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review. Sensors 2018, 18, 4113.

[12]

Singh, J.; Kaur, R.; Singh, D. Energy harvesting in wireless sensor networks: A taxonomic survey. Int. J. Energy Res. 2021, 45, 118–140.

[13]

Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Feng, Z. Y.; Cheng, L. Q.; Huo, Z. W.; Lei, Y. Q.; Sun, Q. J. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329.

[14]

Rokonuzzaman, M.; Mishu, M. K.; Amin, N.; Nadarajah, M.; Roy, R. B.; Rahman, K. S.; Buhari, A. M.; Binzaid, S.; Shakeri, M.; Pasupuleti, J. Self-sustained autonomous wireless sensor network with integrated solar photovoltaic system for internet of smart home-building (IoSHB) applications. Micromachines 2021, 12, 653.

[15]

Xiao, L.; Qian, J. J.; Lian, Z. G.; Long, Z.; Tang, X. L.; Chen, T. T.; Du, X. S.; Cao, L. RF energy powered wireless temperature sensor for monitoring electrical equipment. Sens. Actuators A Phys. 2016, 249, 276–283.

[16]

Zhou, Z. HH.; Li, X. S.; Wu, Y. F.; Zhang, H.; Lin, Z. W.; Meng, K. Y.; Lin, Z. M.; He, Q.; Sun, C. C.; Yang, J. et al. Wireless self-powered sensor networks driven by triboelectric nanogenerator for in- situ real time survey of environmental monitoring. Nano Energy 2018, 53, 501–507.

[17]

Jin, L.; Deng, W. L.; Su, Y. C.; Xu, Z.; Meng, H.; Wang, B.; Zhang, H. P.; Zhang, B. B.; Zhang, L.; Xiao, X. B. et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 2017, 38, 185–192.

[18]

Chang, J. Y.; Zhu, C. Q.; Wang, Z. M.; Wang, Y.; Li, C. S.; Hu, Q.; Xu, R. J.; Du, T. L.; Xu, M. Y.; Feng, L. A full-set and self-powered ammonia leakage monitor system based on CNTs-PPy and triboelectric nanogenerator for zero-carbon vessels. Nano Energy 2022, 98, 107271.

[19]

Xie, Y. D.; Long, J.; Zhao, P. F.; Chen, J. K.; Luo, J. K.; Zhang, Z. J.; Li, K.; Han, Y.; Hao, X. J.; Qu, Z. G. et al. A self-powered radio frequency (RF) transmission system based on the combination of triboelectric nanogenerator (TENG) and piezoelectric element for disaster rescue/relief. Nano Energy 2018, 54, 331–340.

[20]

Lin, Z. M.; Chen, J.; Li, X. S.; Zhou, Z. H.; Meng, K. Y.; Wei, W.; Yang, J.; Wang, Z. L. Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 2017, 11, 8830–8837.

[21]

Wen, D. L.; Huang, P.; Deng, H. T.; Zhang, X. R.; Wang, Y. L.; Zhang, X. S. High-performance hybrid nanogenerator for self-powered wireless multi-sensing microsystems. Microsyst. Nanoeng. 2023, 9, 94.

[22]

Wang, L.; He, T. Y. Y.; Zhang, Z. X.; Zhao, L. B.; Lee, C.; Luo, G. X.; Mao, Q.; Yang, P.; Lin, Q. J.; Li, X. et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and PEG vibration mechanism. Nano Energy 2021, 80, 105555.

[23]

Zhang, C.; Chen, J. K.; Xuan, W. P.; Huang, S. Y.; You, B.; Li, W. J.; Sun, L. L.; Jin, H.; Wang, X. Z.; Dong, S. R. et al. Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nat. Commun. 2020, 11, 58.

[24]

Chen, J. K.; Xuan, W. P.; Zhao, P. F.; Farooq, U.; Ding, P.; Yin, W. L.; Jin, H.; Wang, X. Z.; Fu, Y. Q.; Dong, S. R. et al. Triboelectric effect based instantaneous self-powered wireless sensing with self-determined identity. Nano Energy 2018, 51, 1–9.

[25]

Chen, J. K.; Zhang, C.; Xuan, W. P.; Yu, L. Y.; Dong, S. R.; Xie, Y. D.; Yin, W. L.; Luo, J. K. Triboelectric nanogenerator-based self-powered resonant sensor for non-destructive defect detection. Sensors 2019, 19, 3262.

[26]

Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

[27]

Wang, Z. H.; Jin, Y. C.; Lu, C. Y.; Wang, J. Y.; Song, Z. W.; Yang, X.; Cao, Y. D.; Zi, Y. L.; Wang, Z. L.; Ding, W. B. Triboelectric-nanogenerator-enabled mechanical modulation for infrared wireless communications. Energy Environ. Sci. 2022, 15, 2983–2991.

[28]

Chen, J. K.; Liao, Z. Y.; Wu, Y.; Zhou, H.; Xuan, W. P.; Dong, S. R.; Luo, J. K. Self-powered pumping switched TENG enabled real-time wireless metal tin height and position recognition and counting for production line management. Nano Energy 2021, 90, 106544.

[29]

Tang, Y. Z.; Xuan, W. P.; Zhang, C.; Xu, L. Q.; Liu, F. H.; Chen, J. K.; Jin, H.; Ye, Z.; Cao, Z.; Li, Y. B. et al. Fully self-powered instantaneous wireless traffic monitoring system based on triboelectric nanogenerator and magnetic resonance coupling. Nano Energy 2021, 89, 106429.

[30]

Yin, W. L.; Xie, Y. D.; Long, J.; Zhao, P. F.; Chen, J. K.; Luo, J. K.; Wang, X. Z.; Dong, S. R. A self-power-transmission and non-contact-reception keyboard based on a novel resonant triboelectric nanogenerator (R-TENG). Nano Energy 2018, 50, 16–24.

[31]

Xu, L. Q.; Xuan, W. P.; Chen, J. K.; Zhang, C.; Tang, Y. Z.; Huang, X. W.; Li, W. J.; Jin, H.; Dong, S. R.; Yin, W. L. et al. Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator. Nano Energy 2021, 83, 105814.

[32]

Xu, L. Q.; Tang, Y. Z.; Zhang, C.; Liu, F. H.; Chen, J. K.; Xuan, W. P.; Jin, H.; Ye, Z.; Cao, Z.; Li, Y. B. et al. Fully self-powered instantaneous wireless liquid level sensor system based on triboelectric nanogenerator. Nano Res. 2022, 15, 5425–5434.

[33]

Zhang, C.; Chen, J. K.; Xuan, W. P.; Huang, S. Y.; Shi, L.; Cao, Z.; Ye, Z.; Li, Y. B.; Wang, X. Z.; Dong, S. R. et al. Triboelectric nanogenerator-enabled fully self-powered instantaneous wireless sensor systems. Nano Energy 2022, 92, 106770.

[34]

Zhang, C.; Chen, J. K.; Kuang, H. Z.; Wu, J. H.; Li, J.; Zhang, K. H.; Hao, J.; Dong, S. R.; Huang, Y. H.; Zhang, Q. L. et al. Self-powered autonomous wireless sensor system with multivariable sensing capability. Nano Energy 2022, 104, 107939.

[35]

Wang, H. Y.; Wang, J. Q.; Yao, K. M.; Fu, J. J.; Xia, X.; Zhang, R. R.; Li, J. Y.; Xu, G. Q.; Wang, L. Y.; Yang, J. C. et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Sci. Adv. 2021, 7, eabi6751.

[36]

Zeng, X. C.; Ong, H.; Haworth, L.; Lu, Y. C.; Yang, D. Y.; Rahmati, M.; Wu, Q.; Torun, H.; Martin, J.; Hou, X. H. et al. Fundamentals of monitoring condensation and frost/ice formation in cold environments using thin-film surface-acoustic-wave technology. ACS Appl. Mater. Interfaces 2023, 15, 35648–35663.

[37]

Ding, P.; Chen, J. K.; Farooq, U.; Zhao, P. F.; Soin, N.; Yu, L. Y.; Jin, H.; Wang, X. Z.; Dong, S. R.; Luo, J. K. Realizing the potential of polyethylene oxide as new positive tribo-material: Over 40 W/m2 high power flat surface triboelectric nanogenerators. Nano Energy 2018, 46, 63–72.

[38]

Shi, L.; Jin, H.; Dong, S. R.; Huang, S. Y.; Kuang, H. Z.; Xu, H. S.; Chen, J. K.; Xuan, W. P.; Zhang, S. M.; Li, S. J. et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 2021, 80, 105599.

[39]

Zhang, C.; Wu, J. H.; Li, J.; Zhang, K. H.; Xu, L. Q.; Liu, Y. L.; Xuan, W. P.; Chen, J. K.; Ong, H.; Jin, H. et al. A self-powered instantaneous wireless sensing platform based on integrated triboelectric nanogenerator and negative resistance LC resonator. Measurement 2024, 235, 115032.

Nano Research
Pages 9704-9711
Cite this article:
Zhang C, Zhang K, Lu J, et al. A triboelectric nanogenerator-based self-powered long-distance wireless sensing platform for industries and environment monitoring. Nano Research, 2024, 17(11): 9704-9711. https://doi.org/10.1007/s12274-024-6919-4
Topics:

372

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 June 2024
Revised: 24 July 2024
Accepted: 28 July 2024
Published: 19 August 2024
© Tsinghua University Press 2024
Return